A Model for Carrier-Mediated Biological Signal Transduction Based on Equilibrium Ligand Binding Theory
详细信息    查看全文
  • 作者:Johannes W. R. Martini ; Martin Schlather ; Stefan Schütz
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:78
  • 期:5
  • 页码:1039-1057
  • 全文大小:1,334 KB
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
  • 出版者:Springer New York
  • ISSN:1522-9602
  • 卷排序:78
文摘
Different variants of a mathematical model for carrier-mediated signal transduction are introduced with focus on the odor dose–electrophysiological response curve of insect olfaction. The latter offers a unique opportunity to observe experimentally the effect of an alteration in the carrier molecule composition on the signal molecule-dependent response curve. Our work highlights the role of involved carrier molecules, which have largely been ignored in mathematical models for response curves in the past. The resulting model explains how the involvement of more than one carrier molecule in signal molecule transport can cause dose–response curves as observed in experiments, without the need of more than one receptor per neuron. In particular, the model has the following features: (1) An extended sensitivity range of neuronal response is implemented by a system consisting of only one receptor but several carrier molecules with different affinities for the signal molecule. (2) Given that the sensitivity range is extended by the involvement of different carrier molecules, the model implies that a strong difference in the expression levels of the carrier molecules is absolutely essential for wide range responses. (3) Complex changes in dose–response curves which can be observed when the expression levels of carrier molecules are altered experimentally can be explained by interactions between different carrier molecules. The principles we demonstrate here for electrophysiological responses can also be applied to any other carrier-mediated biological signal transduction process. The presented concept provides a framework for modeling and statistical analysis of signal transduction processes if sufficient information on the underlying biology is available.KeywordsOdor-binding proteinsSignal transductionOlfactionChemical messengersEquilibrium ligand binding

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700