Quality assurance in immunoassay performance—comparison of different enzyme immunoassays for the determination of caffeine in consumer products
详细信息    查看全文
  • 作者:Julia Grandke (1)
    Lidia Oberleitner (1)
    Ute Resch-Genger (1)
    Leif-Alexander Garbe (2)
    Rudolf J. Schneider (1)
  • 关键词:Enzyme immunoassay ; Caffeine ; Enzyme substrate ; Competitive assay ; Assay format ; Direct ; Indirect
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:405
  • 期:5
  • 页码:1601-1611
  • 全文大小:477KB
  • 参考文献:1. Schuurs AH, van Weemen BK (1980) Enzyme-immunoassay: a powerful analytical tool. J Immunoassay 1(2):229-49. doi:10.1080/01971528008055786 CrossRef
    2. Alarcon SH, Palleschi G, Compagnone D, Pascale M, Visconti A, Barna-Vetro I (2006) Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta 69(4):1031-037. doi:10.1016/j.talanta.2005.12.024 j.talanta.2005.12.024">CrossRef
    3. Bahlmann A, Weller MG, Panne U, Schneider RJ (2009) Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Anal Bioanal Chem 395(6):1809-820. doi:10.1007/s00216-009-2958-7 CrossRef
    4. Carvalho JJ, Weller MG, Panne U, Schneider RJ (2010) A highly sensitive caffeine immunoassay based on a monoclonal antibody. Anal Bioanal Chem 396(7):2617-628. doi:10.1007/s00216-010-3506-1 CrossRef
    5. Manclus JJ, Primo J, Montoya A (1996) Development of enzyme-linked immunosorbent assays for the insecticide chlorpyrifos. 1. Monoclonal antibody production and immunoassay design. J Agric Food Chem 44(12):4052-062. doi:10.1021/jf960144q jf960144q">CrossRef
    6. Mire-Sluis AR, Barrett YC, Devanarayan V, Koren E, Liu H, Maia M, Parish T, Scott G, Shankar G, Shores E, Swanson SJ, Taniguchi G, Wierda D, Zuckerman LA (2004) Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods 289(1-):1-6. doi:10.1016/j.jim.2004.06.002 j.jim.2004.06.002">CrossRef
    7. Pastor-Navarro N, Brun EM, Gallego-Iglesias E, Maquieira A, Puchades R (2009) Development of immunoassays to determinate sulfamethoxazole residues in wastewaters. J Environ Monit 11(5):1094-100. doi:10.1039/b818299j j">CrossRef
    8. Schneider C, Sch?ler HF, Schneider RJ (2004) A novel enzyme-linked immunosorbent assay for ethynylestradiol using a long-chain biotinylated EE2 derivative. Steroids 69(4):245-53. doi:10.1016/j.steroids.2004.01.003 j.steroids.2004.01.003">CrossRef
    9. Schneider RJ (2003) Environmental immunoassays. Anal Bioanal Chem 375(1):44-6. doi:10.1007/s00216-002-1659-2
    10. Yu FY, Chi TF, Liu BH, Su CC (2005) Development of a sensitive enzyme-linked immunosorbent assay for the determination of ochratoxin A. J Agric Food Chem 53(17):6947-953. doi:10.1021/jf0513922 jf0513922">CrossRef
    11. Schomberg D, Schomberg I (eds) (2006) Class 1, Oxidoreductases X, EC 1.9-.13, vol 25. Springer handbook of enzymes, 2nd edn. Springer, Berlin
    12. Schomberg D, Schomberg I (eds) (2003) Class 3.1, Hydrolases V, EC 3.1.3, vol 10. Springer handbook of enzymes, 2nd edn. Springer, Berlin
    13. Zhang MC, Wang QE, Zhuang HS (2006) A novel competitive fluorescence immunoassay for the determination of dibutyl phthalate. Anal Bioanal Chem 386(5):1401-406. doi:10.1007/s00216-006-0703-z CrossRef
    14. Zhang MC, Wang QE, Zhuang HS (2007) Determination of dibutyl / o-phthalate by antigen-coated competitive fluorescence immunoassay. Anal Lett 40(1):127-37. doi:10.1080/00032710600952564 CrossRef
    15. Lu Y, Peterson JR, Gooding JJ, Lee NA (2012) Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages. Anal Bioanal Chem 403(6):1607-618 CrossRef
    16. Abad A, Moreno MJ, Montoya A (1999) Development of monoclonal antibody-based immunoassays to the / N-methylcarbamate pesticide carbofuran. J Agric Food Chem 47(6):2475-485. doi:10.1021/jf981184s jf981184s">CrossRef
    17. Bekheit HKM, Lucas AD, Szurdoki F, Gee SJ, Hammock BD (1993) An enzyme-immunoassay for the environmental monitoring of the herbicide bromacil. J Agric Food Chem 41(11):2220-227. doi:10.1021/jf00035a075 jf00035a075">CrossRef
    18. Cervino C, Weber E, Knopp D, Niessner R (2008) Comparison of hybridoma screening methods for the efficient detection of high-affinity hapten-specific monoclonal antibodies. J Immunol Methods 329(1-):184-93. doi:10.1016/j.jim.2007.10.010 j.jim.2007.10.010">CrossRef
    19. Esteve-Turrillas FA, Parra J, Abad-Fuentes A, Agullo C, Abad-Somovilla A, Mercader JV (2010) Hapten synthesis, monoclonal antibody generation, and development of competitive immunoassays for the analysis of picoxystrobin in beer. Anal Chim Acta 682(1-):93-03. doi:10.1016/j.aca.2010.09.042 j.aca.2010.09.042">CrossRef
    20. Li K, Chen RL, Zhao BT, Liu M, Karu AE, Roberts VA, Li QX (1999) Monoclonal antibody-based ELISAs for part-per-billion determination of polycyclic aromatic hydrocarbons: Effects of haptens and formats on sensitivity and specificity. Anal Chem 71(2):302-09. doi:10.1021/ac980765d CrossRef
    21. Maragos C, Busman M, Sugita-Konishi Y (2006) Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. Food Addit Contam 23(8):816-25. doi:10.1080/2652030600699072 CrossRef
    22. Micheli L, Di Stefano S, Moscone D, Palleschi G, Marini S, Coletta M, Draisci R, delli Quadri F (2002) Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Anal Bioanal Chem 373(8):678-84. doi:10.1007/s00216-002-1399-3 CrossRef
    23. Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme-Linked Immunosorbent Assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M-1 detection. Talanta 77(1):138-43. doi:10.1016/j.talanta.2008.05.048 j.talanta.2008.05.048">CrossRef
    24. Usleber E, Lorber M, Straka M, Terplan G, M?rtlbauer E (1994) Enzyme-immunoassay for the detection of isoxazolyl penicillin antibiotics in milk. Analyst 119(12):2765-768. doi:10.1039/an9941902765 CrossRef
    25. Deschamps RJA, Hall JC (1991) Enzyme immunoassays for picloram detection: a comparison of assay formats. Food Agric Immunol 3(3-):135-45 CrossRef
    26. Porstmann B, Porstmann T, Nugel E, Evers U (1985) Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays—horseradish peroxidase, alkaline phosphatase or beta-galactosidase? J Immunol Methods 79(1):27-7 CrossRef
    27. Tuuminen T, Palom?ki P, Rakkolainen A, Welin MG, Weber T, K?pyaho K (1991) 3-para-hydroxyphenylpropionic acid—a sensitive fluorogenic substrate for automated fluorometric enzyme immunoassays. J Immunoass Immunochem 12(1):29-6 CrossRef
    28. Yolken RH, Leister FJ (1982) Comparison of fluorescent and colorigenic substrates for enzyme immunoassays. J Clin Microbiol 15(5):757-60
    29. Mairal T, Frese I, Llaudet E, Redondo CB, Katakis I, von Germar F, Drese K, O’Sullivan CK (2009) Microfluorimeter with disposable polymer chip for detection of coeliac disease toxic gliadin. Lab Chip 9(24):3535-542. doi:10.1039/b914635k CrossRef
    30. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1-):248-54. doi:10.1006/abio.1976.9999 CrossRef
    31. Grandke J, Resch-Genger U, Bremser W, Garbe LA, Schneider RJ (2012) Quality assurance in immunoassay performance—temperature effects. Anal Methods 4(4):901-05. doi:10.1039/c2ay05918e CrossRef
    32. Frey A, Meckelein B, Externest D, Schmidt MA (2000) A stable and highly sensitive 3,3-5,5-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods 233(1-):47-6 CrossRef
    33. Matsumoto T, Furuta T, Nimura Y, Suzuki O (1984) 3-( / para-Hydroxyphenyl)propionic acid as a new fluorogenic reagent for amine oxidase assays. Anal Biochem 138(1):133-36 CrossRef
    34. Dudley RA, Edwards P, Ekins RP, Finney DJ, McKenzie IGM, Raab GM, Rodbard D, Rodgers RPC (1985) Guidelines for immunoassay data-processing. Clin Chem 31(8):1264-271
    35. Ekins R (1981) The Precision Profile: its use in RIA assessment and design. The Ligand Quarterly 4(2):33-4
    36. Findlay JWA, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, Khan MN, Bowsher RR (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal 21(6):1249-273. doi:10.1016/s0731-7085(99)00244-7 CrossRef
    37. Hayashi Y, Matsuda R, Maitani T, Imai K, Nishimura W, Ito K, Maeda M (2004) Precision, limit of detection and range of quantitation in competitive ELISA. Anal Chem 76(5):1295-301. doi:10.1021/ac0302859 CrossRef
  • 作者单位:Julia Grandke (1)
    Lidia Oberleitner (1)
    Ute Resch-Genger (1)
    Leif-Alexander Garbe (2)
    Rudolf J. Schneider (1)

    1. BAM Federal Institute for Materials Research and Testing, Richard-Willst?tter-Str. 11, 12489, Berlin, Germany
    2. Technische Universit?t Berlin, Seestr. 13, 13353, Berlin, Germany
  • ISSN:1618-2650
文摘
Enzyme immunoassays with optical detection are amongst the most widely used bioanalytical tools. We defined seven parameters for the quality assessment of immunoassays that were addressed in a systematic study of direct and indirect immunoassays, using the enzymes horseradish peroxidase (HRP) and alkaline phosphatase (AP), the chromogenic substrates 3,3-5,5-tetramethylbenzidine (TMB) and para-nitrophenyl phosphate, and the fluorescent substrates 3-(4-hydroxyphenyl)propionic acid and 4-methylumbelliferyl phosphate. The same monoclonal antibody against caffeine was used throughout the study. The four quality parameters regarding the standard curve were the test midpoint (sensitivity), the measurement range, the relative dynamic range of the signal, and the goodness of fit of the adjusted four-parameter logistic function. All HRP immunoassays showed a higher sensitivity compared to the AP assays. On the basis of all four criteria, it was established that the direct assay format is superior to the indirect format, the immunoassay using HRP TMB fulfilling all requirements best. In a second step, caffeine concentrations in 24 beverage and cosmetics samples were determined and three more quality parameters were assessed with this application. The direct HRP TMB assay showed one of the best intra- and inter-plate precisions and the best accuracy, defined by the correlation of results with those from the chosen reference method liquid chromatography tandem mass spectrometry (LC-MS/MS). Considering all criteria, HRP TMB seems to be the enzyme substrate system of choice preferably used in the direct assay format. Figure Overview on the different enzyme immunoassay formats compared

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700