Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein
详细信息    查看全文
  • 作者:Marcel A Müller (1) (2)
    Lia van der Hoek (3)
    Daniel Voss (2)
    Oliver Bader (2)
    D?rte Lehmann (2)
    Axel R Schulz (2)
    Stephan Kallies (1)
    Tasnim Suliman (4)
    Burtram C Fielding (4)
    Christian Drosten (1)
    Matthias Niedrig (2)
  • 刊名:Virology Journal
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:7
  • 期:1
  • 全文大小:2461KB
  • 参考文献:1. Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B: Identification of a new human coronavirus. / Nat Med 2004, 10:368-73. CrossRef
    2. Hofmann H, Pyrc K, Hoek L, Geier M, Berkhout B, Pohlmann S: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. / Proc Natl Acad Sci USA 2005, 102:7988-993. CrossRef
    3. Han TH, Chung JY, Kim SW, Hwang ES: Human Coronavirus-NL63 infections in Korean children, 2004-006. / J Clin Virol 2007, 38:27-1. CrossRef
    4. Vabret A, Mourez T, Dina J, Hoek L, Gouarin S, Petitjean J, Brouard J, Freymuth F: Human coronavirus NL63, France. / Emerg Infect Dis 2005, 11:1225-229.
    5. Pyrc K, Berkhout B, Hoek L: The novel human coronaviruses NL63 and HKU1. / J Virol 2007, 81:3051-057. CrossRef
    6. Hoek L, Sure K, Ihorst G, Stang A, Pyrc K, Jebbink MF, Petersen G, Forster J, Berkhout B, Uberla K: Croup is associated with the novel coronavirus NL63. / PLoS Med 2005, 2:e240. CrossRef
    7. Masters PS: The molecular biology of coronaviruses. / Adv Virus Res 2006, 66:193-92. CrossRef
    8. Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ: Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. / J Virol 1994, 68:6523-534.
    9. Tooze J, Tooze S, Warren G: Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. / Eur J Cell Biol 1984, 33:281-93.
    10. Escors D, Ortego J, Laude H, Enjuanes L: The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. / J Virol 2001, 75:1312-324. CrossRef
    11. Locker JK, Opstelten DJ, Ericsson M, Horzinek MC, Rottier PJ: Oligomerization of a trans-Golgi/trans-Golgi network retained protein occurs in the Golgi complex and may be part of its retention. / J Biol Chem 1995, 270:8815-821. CrossRef
    12. Lontok E, Corse E, Machamer CE: Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. / J Virol 2004, 78:5913-922. CrossRef
    13. Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ: Coexpression and association of the spike protein and the membrane protein of mouse hepatitis virus. / Adv Exp Med Biol 1995, 380:291-97.
    14. Corse E, Machamer CE: The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. / Virology 2003, 312:25-4. CrossRef
    15. Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ: Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. / J Virol 2000, 74:2333-342. CrossRef
    16. Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, / et al.: Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. / J Gen Virol 2005, 86:1423-434. CrossRef
    17. Alexander S, Elder JH: Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. / Science 1984, 226:1328-330. CrossRef
    18. Braakman I, van Anken E: Folding of viral envelope glycoproteins in the endoplasmic reticulum. / Traffic 2000, 1:533-39. CrossRef
    19. de Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, Masters PS, Rottier PJ: The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. / Virology 2003, 312:395-06. CrossRef
    20. Wissink EH, Kroese MV, Maneschijn-Bonsing JG, Meulenberg JJ, van Rijn PA, Rijsewijk FA, Rottier PJ: Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production. / J Gen Virol 2004, 85:3715-723. CrossRef
    21. de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ: The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. / Virology 2002, 296:177-89. CrossRef
    22. Ortego J, Sola I, Almazan F, Ceriani JE, Riquelme C, Balasch M, Plana J, Enjuanes L: Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. / Virology 2003, 308:13-2. CrossRef
    23. Herrewegh AA, Vennema H, Horzinek MC, Rottier PJ, de Groot RJ: The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. / Virology 1995, 212:622-31. CrossRef
    24. Haijema BJ, Volders H, Rottier PJ: Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. / J Virol 2004, 78:3863-871. CrossRef
    25. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. / J Mol Biol 2003, 331:991-004. CrossRef
    26. Frieman MB, Yount B, Sims AC, Deming DJ, Morrison TE, Sparks J, Denison M, Heise M, Baric RS: SARS coronavirus accessory ORFs encode luxury functions. / Adv Exp Med Biol 2006, 581:149-52. CrossRef
    27. Pfefferle S, Krahling V, Ditt V, Grywna K, Muhlberger E, Drosten C: Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. / Virol J 2009, 6:131. CrossRef
    28. Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, Denison MR, Davis N, Baric RS: Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. / J Virol 2005, 79:14909-4922. CrossRef
    29. Schaecher SR, Touchette E, Schriewer J, Buller RM, Pekosz A: Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. / J Virol 2007, 81:11054-1068. CrossRef
    30. Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, / et al.: Prevalence and genetic diversity of coronaviruses in bats from China. / J Virol 2006, 80:7481-490. CrossRef
    31. Akerstrom S, Tan YJ, Mirazimi A: Amino acids 15-8 in the ectodomain of SARS coronavirus 3a protein induces neutralizing antibodies. / FEBS Lett 2006, 580:3799-803. CrossRef
    32. Ito N, Mossel EC, Narayanan K, Popov VL, Huang C, Inoue T, Peters CJ, Makino S: Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. / J Virol 2005, 79:3182-186. CrossRef
    33. Shen S, Lin PS, Chao YC, Zhang A, Yang X, Lim SG, Hong W, Tan YJ: The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. / Biochem Biophys Res Commun 2005, 330:286-92. CrossRef
    34. Voss D, Kern A, Traggiai E, Eickmann M, Stadler K, Lanzavecchia A, Becker S: Characterization of severe acute respiratory syndrome coronavirus membrane protein. / FEBS Lett 2006, 580:968-73. CrossRef
    35. Oostra M, de Haan CA, de Groot RJ, Rottier PJ: Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. / J Virol 2006, 80:2326-336. CrossRef
    36. Tan YJ, Teng E, Shen S, Tan TH, Goh PY, Fielding BC, Ooi EE, Tan HC, Lim SG, Hong W: A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. / J Virol 2004, 78:6723-734. CrossRef
    37. Law PT, Wong CH, Au TC, Chuck CP, Kong SK, Chan PK, To KF, Lo AW, Chan JY, Suen YK, / et al.: The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. / J Gen Virol 2005, 86:1921-930. CrossRef
    38. Yuan X, Yao Z, Wu J, Zhou Y, Shan Y, Dong B, Zhao Z, Hua P, Chen J, Cong Y: G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway. / Am J Respir Cell Mol Biol 2007, 37:9-9. CrossRef
    39. Tan YJ, Tham PY, Chan DZ, Chou CF, Shen S, Fielding BC, Tan TH, Lim SG, Hong W: The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. / J Virol 2005, 79:10083-0087. CrossRef
    40. Akerstrom S, Mirazimi A, Tan YJ: Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. / Antiviral Res 2007, 73:219-27. CrossRef
    41. Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel V, Sun B: Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. / Proc Natl Acad Sci USA 2006, 103:12540-2545. CrossRef
    42. Freundt EC, Yu L, Goldsmith CS, Welsh S, Cheng A, Yount B, Liu W, Frieman MB, Buchholz UJ, Screaton GR, / et al.: The ORF 3a Protein of SARS-CoV Promotes Membrane Rearrangement and Cell Death. / J Virol 2009.
    43. Andries K, Pensaert M: Vomiting and wasting disease, a coronavirus infection of pigs. / Adv Exp Med Biol 1981, 142:399-08.
    44. Song DS, Yang JS, Oh JS, Han JH, Park BK: Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. / Vaccine 2003, 21:1833-842. CrossRef
    45. Woods RD: Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene. / Can J Vet Res 2001, 65:28-2.
    46. Donaldson EF, Yount B, Sims AC, Burkett S, Pickles RJ, Baric RS: Systematic assembly of a full-length infectious clone of human coronavirus NL63. / J Virol 2008, 82:11948-1957. CrossRef
    47. Dijkman R, Jebbink MF, Wilbrink B, Pyrc K, Zaaijer HL, Minor PD, Franklin S, Berkhout B, Thiel V, Hoek L: Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. / Virol J 2006, 3:106. CrossRef
    48. Fielding BC, Suliman T: Comparative analysis of human coronavirus-NL63 ORF3 protein homologues. / African Journal of Biotechnology 2009, 8:3175-178.
    49. Yu CJ, Chen YC, Hsiao CH, Kuo TC, Chang SC, Lu CY, Wei WC, Lee CH, Huang LM, Chang MF, / et al.: Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. / FEBS Lett 2004, 565:111-16. CrossRef
    50. Yuan X, Li J, Shan Y, Yang Z, Zhao Z, Chen B, Yao Z, Dong B, Wang S, Chen J, Cong Y: Subcellular localization and membrane association of SARS-CoV 3a protein. / Virus Res 2005, 109:191-02. CrossRef
    51. Duarte M, Tobler K, Bridgen A, Rasschaert D, Ackermann M, Laude H: Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. / Virology 1994, 198:466-76. CrossRef
    52. McGoldrick A, Lowings JP, Paton DJ: Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. / Arch Virol 1999, 144:763-70. CrossRef
    53. Tang X, Li G, Vasilakis N, Zhang Y, Shi Z, Zhong Y, Wang LF, Zhang S: Differential stepwise evolution of SARS coronavirus functional proteins in different host species. / BMC Evol Biol 2009, 9:52. CrossRef
    54. Pyrc K, Dijkman R, Deng L, Jebbink MF, Ross HA, Berkhout B, Hoek L: Mosaic structure of human coronavirus NL63, one thousand years of evolution. / J Mol Biol 2006, 364:964-73. CrossRef
    55. Huang C, Narayanan K, Ito N, Peters CJ, Makino S: Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. / J Virol 2006, 80:210-17. CrossRef
    56. Narayanan K, Huang C, Makino S: SARS coronavirus accessory proteins. / Virus Res 2008, 133:113-21. CrossRef
    57. Kanzawa N, Nishigaki K, Hayashi T, Ishii Y, Furukawa S, Niiro A, Yasui F, Kohara M, Morita K, Matsushima K, / et al.: Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. / FEBS Lett 2006, 580:6807-812. CrossRef
    58. Tan YJ, Lim SG, Hong W: Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. / Antiviral Res 2006, 72:78-8. CrossRef
    59. van Kuppeveld FJ, Melchers WJ, Willemse HF, Kissing J, Galama JM, Logt JT: Detection of Mycoplasma pulmonis in experimentally infected laboratory rats by 16S rRNA amplification. / J Clin Microbiol 1993, 31:524-27.
    60. Herzog P, Drosten C, Muller MA: Plaque assay for human coronavirus NL63 using human colon carcinoma cells. / Virol J 2008, 5:138. CrossRef
    61. Niedrig M, Lademann M, Emmerich P, Lafrenz M: Assessment of IgG antibodies against yellow fever virus after vaccination with 17D by different assays: neutralization test, haemagglutination inhibition test, immunofluorescence assay and ELISA. / Trop Med Int Health 1999, 4:867-71. CrossRef
    62. Hattermann K, Muller MA, Nitsche A, Wendt S, Donoso Mantke O, Niedrig M: Susceptibility of different eukaryotic cell lines to SARS-coronavirus. / Arch Virol 2005, 150:1023-031. CrossRef
    63. Muller MA, Paweska JT, Leman PA, Drosten C, Grywna K, Kemp A, Braack L, Sonnenberg K, Niedrig M, Swanepoel R: Coronavirus antibodies in African bat species. / Emerg Infect Dis 2007, 13:1367-370.
  • 作者单位:Marcel A Müller (1) (2)
    Lia van der Hoek (3)
    Daniel Voss (2)
    Oliver Bader (2)
    D?rte Lehmann (2)
    Axel R Schulz (2)
    Stephan Kallies (1)
    Tasnim Suliman (4)
    Burtram C Fielding (4)
    Christian Drosten (1)
    Matthias Niedrig (2)

    1. University of Bonn Medical Centre, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
    2. Robert Koch-Institut, Center for Biological Safety, Nordufer 20, D-13353, Berlin, Germany
    3. Laboratory of Experimental Virology, University of Amsterdam, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
    4. Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
  • ISSN:1743-422X
文摘
Background Human pathogenic coronavirus NL63 (hCoV-NL63) is a group 1 (alpha) coronavirus commonly associated with respiratory tract infections. In addition to known non-structural and structural proteins all coronaviruses have one or more accessory proteins whose functions are mostly unknown. Our study focuses on hCoV-NL63 open reading frame 3 (ORF 3) which is a highly conserved accessory protein among coronaviruses. Results In-silico analysis of the 225 amino acid sequence of hCoV-NL63 ORF 3 predicted a triple membrane-spanning protein. Expression in infected CaCo-2 and LLC-MK2 cells was confirmed by immunofluorescence and Western blot analysis. The protein was detected within the endoplasmatic reticulum/Golgi intermediate compartment (ERGIC) where coronavirus assembly and budding takes place. Subcellular localization studies using recombinant ORF 3 protein transfected in Huh-7 cells revealed occurrence in ERGIC, Golgi- and lysosomal compartments. By fluorescence microscopy of differently tagged envelope (E), membrane (M) and nucleocapsid (N) proteins it was shown that ORF 3 protein colocalizes extensively with E and M within the ERGIC. Using N-terminally FLAG-tagged ORF 3 protein and an antiserum specific to the C-terminus we verified the proposed topology of an extracellular N-terminus and a cytosolic C-terminus. By in-vitro translation analysis and subsequent endoglycosidase H digestion we showed that ORF 3 protein is N-glycosylated at the N-terminus. Analysis of purified viral particles revealed that ORF 3 protein is incorporated into virions and is therefore an additional structural protein. Conclusions This study is the first extensive expression analysis of a group 1 hCoV-ORF 3 protein. We give evidence that ORF 3 protein is a structural N-glycosylated and virion-incorporated protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700