PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
详细信息    查看全文
  • 作者:Da-Wei Li (1)
    Rafael Brüschweiler (1)
  • 关键词:NMR chemical shift prediction ; Side ; chain methyl groups ; Protein backbone
  • 刊名:Journal of Biomolecular NMR
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:54
  • 期:3
  • 页码:257-265
  • 全文大小:287KB
  • 参考文献:1. Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8:1409-414 CrossRef
    2. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91:43-6 CrossRef
    3. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970-4971 CrossRef
    4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235-42 CrossRef
    5. Brüschweiler R, Case DA (1994) Adding harmonic motion to the Karplus relation for spin–spin coupling. J Am Chem Soc 116:11199-1200 CrossRef
    6. Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90:L36–L38 CrossRef
    7. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615-620 CrossRef
    8. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999-012 CrossRef
    9. Haigh CW, Mallion RB (1972) New tables of ring current shielding in proton magnetic-resonance. Org Magn Res 4:203-28 CrossRef
    10. Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic-resonance. Prog NMR Spectrosc 13:303-44 CrossRef
    11. Han B, Liu YF, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43-7 CrossRef
    12. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435-47 CrossRef
    13. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712-25 CrossRef
    14. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential function for simulating liquid water. J Chem Phys 79:926-35 CrossRef
    15. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120-27 CrossRef
    16. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894-3895 CrossRef
    17. Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE (2010) A transient and low-populated protein-folding intermediate at atomic resolution. Science 329:1312-316 CrossRef
    18. Lange OF, van der Spoel D, de Groot BL (2010) Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys J 99:647-55 CrossRef
    19. Lehtivarjo J, Hassinen T, Korhonen SP, Perakyla M, Laatikainen R (2009) 4D prediction of protein H-1 chemical shifts. J Biomol NMR 45:413-26 CrossRef
    20. Lehtivarjo J, Tuppurainen K, Hassinen T, Laatikainen R, Perakyla M (2012) Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. J Biomol NMR 52:257-67 CrossRef
    21. Li DW, Brüschweiler R (2010a) NMR-based protein potentials. Angew Chem 49:6778-780 CrossRef
    22. Li DW, Brüschweiler R (2010b) Certification of molecular dynamics trajectories with NMR chemical shifts. J Phys Chem Lett 1:246-48 CrossRef
    23. Li DW, Brüschweiler R (2011) Iterative optimization of molecular mechanics force fields from NMR data of full-length proteins. J Chem Theory Comput 7:1773-782 CrossRef
    24. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306-17
    25. Lindorff-Larsen K, Best RB, Vendruscolo M (2005) Interpreting dynamically-averaged scalar couplings in proteins. J Biomol NMR 32:273-80 CrossRef
    26. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950-958
    27. Long D, Li DW, Walter KFA, Griesinger C, Brüschweiler R (2011) Toward a predictive understanding of slow methyl group dynamics in proteins. Biophys J 101:910-15 CrossRef
    28. Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129:4724-730 CrossRef
    29. Markwick PR, Showalter SA, Bouvignies G, Brüschweiler R, Blackledge M (2009) Structural dynamics of protein backbone phi angles: extended molecular dynamics simulations versus experimental (3) J scalar couplings. J Biomol NMR 45:17-1 CrossRef
    30. Markwick PRL, Cervantes CF, Abel BL, Komives EA, Blackledge M, McCammon JA (2010) Enhanced conformational space sampling improves the prediction of chemical shifts in proteins. J Am Chem Soc 132:1220-221 CrossRef
    31. McConnell HM (1957) Theory of nuclear magnetic shielding in molecules. I. Long-range dipolar shielding of protons. J Chem Phys 27:226-29 CrossRef
    32. Meiler J, Prompers JJ, Peti W, Griesinger C, Brüschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098-107 CrossRef
    33. Moon S, Case DA (2007) A new model for chemical shifts of amide hydrogens in proteins. J Biomol NMR 38:139-50 CrossRef
    34. Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215-40 CrossRef
    35. Osapay K, Case DA (1991) A new analysis of proton chemical-shifts in proteins. J Am Chem Soc 113:9436-444 CrossRef
    36. Robustelli P, Stafford KA, Palmer AG (2012) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134:6365-374 CrossRef
    37. Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P, Gutmanas A, Guntert P, He YF, Herrmann T, Huang YPJ, Jaravine V, Jonker HRA, Kennedy MA, Lange OF, Liu GH, Malliavin TE, Mani R, Mao BC, Montelione GT, Nilges M, Rossi P, van dS, G, Schwalbe H, Szyperski TA, Vendruscolo M, Vernon R, Vranken WF, de V, S, Vuister GW, Wu B, Yang YH, Bonvin AMJJ (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure?20:227-36
    38. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868-71 CrossRef
    39. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011) Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR 50:331-46 CrossRef
    40. Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289-02 CrossRef
    41. Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13-2 CrossRef
    42. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685-690 CrossRef
    43. Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63-8 CrossRef
    44. Showalter SA, Brüschweiler R (2007) Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J Chem Theory Comput 3:961-75 CrossRef
    45. Showalter SA, Johnson E, Rance M, Brüschweiler R (2007) Toward quantitative interpretation of methyl side-chain dynamics from NMR by molecular dynamics simulations. J Am Chem Soc 129:14146-4147 CrossRef
    46. Trbovic N, Kim B, Friesner RA, Palmer AG (2008) Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation. Proteins 71:684-94 CrossRef
    47. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408 CrossRef
    48. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701-718 CrossRef
    49. Vila JA, Arnautova YA, Martin OA, Scheraga HA (2009) Quantum-mechanics-derived C-13(alpha) chemical shift server (CheShift) for protein structure validation. Proc Natl Acad Sci USA 106:16972-6977 CrossRef
    50. Vogeli B, Ying JF, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129:9377-385 CrossRef
    51. Wickstrom L, Okur A, Simmerling C (2009) Evaluating the performance of the ff99SB force field based on NMR scalar coupling data. Biophys J 97:853-56 CrossRef
    52. Xu XP, Case DA (2001) Automated prediction of 15N, 13Calpha, 13Cbeta and 13C-chemical shifts in proteins using a density functional database. J Biomol NMR 21:321-33 CrossRef
    53. Xu XP, Case DA (2002) Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C-chemical shifts in peptides using density functional theory. Biopolymers 65:408-23 CrossRef
    54. Xue Y, Ward JM, Yuwen TR, Podkorytov IS, Skrynnikov NR (2012) Microsecond time-scale conformational exchange in proteins: using long molecular dynamics trajectory to simulate NMR relaxation dispersion data. J Am Chem Soc 134:2555-562 CrossRef
    55. Zhang F, Brüschweiler R (2002) Contact model for the prediction of NMR N-H order parameters in globular proteins. J Am Chem Soc 124:12654-2655 CrossRef
    56. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173-95 CrossRef
  • 作者单位:Da-Wei Li (1)
    Rafael Brüschweiler (1)

    1. Chemical Sciences Laboratory, Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
  • ISSN:1573-5001
文摘
The combination of the wide availability of protein backbone and side-chain NMR chemical shifts with advances in understanding of their relationship to protein structure makes these parameters useful for the assessment of structural-dynamic protein models. A new chemical shift predictor (PPM) is introduced, which is solely based on physical–chemical contributions to the chemical shifts for both the protein backbone and methyl-bearing amino-acid side chains. To explicitly account for the effects of protein dynamics on chemical shifts, PPM was directly refined against 100?ns long molecular dynamics (MD) simulations of 35 proteins with known experimental NMR chemical shifts. It is found that the prediction of methyl-proton chemical shifts by PPM from MD ensembles is improved over other methods, while backbone Cα, Cβ, C- N, and HN chemical shifts are predicted at an accuracy comparable to the latest generation of chemical shift prediction programs. PPM is particularly suitable for the rapid evaluation of large protein conformational ensembles on their consistency with experimental NMR data and the possible improvement of protein force fields from chemical shifts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700