Taming the wild: resolving the gene pools of non-model Arabidopsis lineages
详细信息    查看全文
  • 作者:Nora Hohmann (1)
    Roswitha Schmickl (1) (2)
    Tzen-Yuh Chiang (3)
    Magdalena Lu膷anov谩 (2) (4)
    Filip Kol谩艡 (2) (4)
    Karol Marhold (2) (5)
    Marcus A Koch (1)

    1. Centre for Organismal Studies (COS) Heidelberg
    ; Heidelberg University ; Heidelberg ; 69120 ; Germany
    2. Institute of Botany
    ; Academy of Sciences of the Czech Republic ; Pr暖honice ; CZ-25243 ; Czech Republic
    3. Department of Life Sciences
    ; Cheng-Kung University ; Tainan ; Taiwan
    4. Department of Botany
    ; Faculty of Science ; Charles University in Prague ; Ben谩tsk谩 2 ; Prague ; CZ-128 01 ; Czech Republic
    5. Institute of Botany Slovak Academy of Sciences
    ; D煤bravsk谩 cesta 9 ; Bratislava ; SK-845 23 ; Slovakia
  • 关键词:Chloroplast ; Cytology ; Evolution ; ITS ; Microsatellites ; Systematics ; Taxonomy
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,987 KB
  • 参考文献:1. Clauss, M, Koch, MA (2006) Arabidopsis and its poorly known relatives. Trends Pl Sci 11: pp. 449-459 CrossRef
    2. Al-Shehbaz, IA, O鈥橩ane, SL, Price, RA (1999) Generic placement of species excluded from Arabidopsis. Novon 9: pp. 296-307 CrossRef
    3. Al-Shehbaz IA, O鈥橩ane SL: Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In / The Arabidopsis Book 2002, Volume 1. Edited by Torii K. The American Society of Plant Biologists; 2002:e0001. doi:10.1199/tab.0001.
    4. Koch, M, Bishop, J, Mitchell-Olds, T (1999) Molecular systematics and evolution of Arabidopsis and Arabis. Pl Biol 1: pp. 529-537 CrossRef
    5. Koch, MA, Haubold, B, Mitchell-Olds, T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17: pp. 1483-1498 CrossRef
    6. Koch, MA, Haubold, B, Mitchell-Olds, T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic MATK and nuclear CHS sequences. Am J Bot 88: pp. 534-544 CrossRef
    7. Karl, R, Koch, MA (2013) A world-wide perspective on crucifer speciation and evolution: phylogeny, biogeography and trait evolution in tribe Arabideae. Ann Bot 112: pp. 983-1001 CrossRef
    8. O鈥橩ane, SL, Al-Shehbaz, IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7: pp. 323-327 CrossRef
    9. O鈥橩ane, SL, Al-Shehbaz, IA (2003) Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard 90: pp. 603-612 CrossRef
    10. Warwick, SI, Al-Shehbaz, IA, Sauder, CA (2006) Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84: pp. 269-281 CrossRef
    11. Kadota, Y (2007) Arabidopsis umezawana (Brassicaceae), a new species from Mt. Rishirizan, Rishiri Island, Hokkaido, Northern Japan. J Jpn Bot 82: pp. 232-237
    12. Dorofeyev, VI (2002) Cruciferae of European Russia. Turczaninowia 5: pp. 5-114
    13. Marhold, K, Pern媒, M, Koln铆k, M (2003) Miscellaneous validations in Cruciferae and Crassulaceae. Willdenowia 33: pp. 69-70
    14. Shimizu, KK, Fujii, S, Marhold, K, Watanabe, K, Kudoh, H (2005) Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot 56: pp. 163-172
    15. Kolnik, M, Marhold, K (2006) Distribution, chromosome numbers and nomenclature conspect of Arabidopsis halleri (Brassicaceae) in theCarpathians. Biologia (Bratislava) 61: pp. 41-50 CrossRef
    16. Iljinska, A, Didukh, Y, Burda, R, Korotschenko, I (2007) Ecoflora of Ukraine. Phytosociocentre Press, Kyiv
    17. Elven, DR, Murray, J (2008) New combinations in the Panarctic vascular plant flora. J Bot Res Inst Texas 2: pp. 433-438
    18. Koch, MA, Wernisch, M, Schmickl, R (2008) Arabidopsis thaliana鈥檚 wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57: pp. 933-943
    19. Schmickl, R, Paule, J, Klein, J, Marhold, K, Koch, MA (2012) The evolutionary history of the Arabidopsis arenosa species complex: Highly diverse tetraploids mask that the Western Carpathians are the center of species and genetic diversity. PLoS One 7: pp. e42691 CrossRef
    20. Koch, MA, Kiefer, M, German, D, Al-Shehbaz, IA, Franzke, A, Mummenhoff, K (2012) BrassiBase: tools and biological resources to study characters and traits in the Brassicaceae 鈥?version 1.1. TAXON 61: pp. 1001-1009
    21. Koch, MA, German, D (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers Pl Science 4: pp. e267
    22. Koch, MA, Matschinger, M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104: pp. 6272-6277 CrossRef
    23. Castric, V, Bechsgaard, J, Schierup, MH, Vekemans, X (2008) Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet 4: pp. e1000168 CrossRef
    24. S盲ll, T, Jakobsson, M, Lind-Halld茅n, C, Halld茅n, C (2003) Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 16: pp. 1019-1029 CrossRef
    25. Jakobsson, M, Hagenblad, J, Tavar茅, S, S盲ll, T, Halld茅n, C, Lind-Halld茅n, C, Nordborg, M (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol Biol Evol 23: pp. 1217-1231 CrossRef
    26. Schmickl, R, J酶rgensen, MH, Brysting, AK, Koch, MA (2008) Phylogeographic implications for the North American boreal-arctic Arabidopsis lyrata complex. Plant Ecol Div 1: pp. 245-254 CrossRef
    27. Schmickl, R, Jorgenson, M, Brysting, A, Koch, MA (2010) The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 10: pp. e98 CrossRef
    28. Shimizu-Inatsugi, R, Lihov谩, J, Iwanaga, H, Kudoh, H, Marhold, K, Savolainen, O, Watanabe, K, Yakubov, VV, Shimizu, KK (2009) The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol 18: pp. 4024-4048 CrossRef
    29. Schmickl, R, Koch, MA (2011) Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A 108: pp. 14192-14197 CrossRef
    30. Pauwels, M, Saumitou-Laprade, P, Holl, AC, Petit, D, Bonnin, I (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in Central Europe: the cpDNA testimony. Molec Ecol 14: pp. 4403-4414 CrossRef
    31. Pauwels, M, Vekemans, X, God茅, C, Fr茅rot, H, Castric, V, Saimitou-Laprade, P (2012) Nuclear and chloroplast DNA phy logeography reveals vicariance among European popula tions of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytol 193: pp. 916-928 CrossRef
    32. Tedder, A, Hoebe, PN, Ansell, SK, Mable, BK (2010) Using chloroplast genes for phylogeography in Arabidopsis lyrata. Diversity 2: pp. 653-678 CrossRef
    33. Hoebe, PN, Stift, M, Tedder, A, Mable, BK (2009) Multiple losses of self-incompatibility in North-American Arabidopsis lyrata? Phylogeographic context and population genetic consequences. Mol Ecol 18: pp. 4294-4939 CrossRef
    34. Clauss, M, Mitchell-Olds, T (2006) Population genetic structure of Arabidopsis lyrata in Europe. Mol Ecol 15: pp. 2753-2766 CrossRef
    35. Kuittinen, H, Niittyvuopio, A, Rinne, P, Savolainen, O (2008) Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol 25: pp. 319-329 CrossRef
    36. Muller, MH, Lepp盲l盲, J, Savolainen, O (2008) Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 100: pp. 47-58 CrossRef
    37. Riihim盲ki, M, Podolsky, R, Kuittinen, H, Koelewijn, H, Savolainen, O (2005) Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica 123: pp. 63-74 CrossRef
    38. Leinonen, PH, Sandring, S, Quilot, B, Clauss, MJ, Mitchell-Olds, T, Agren, J, Savolainen, O (2009) Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 96: pp. 1129-1137 CrossRef
    39. Turner, TL, Wettberg, EJ, Nuzhdin, SV (2008) Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One 3: pp. e3183 CrossRef
    40. Savolainen O, Kuittinen H: Arabidopsis lyrata genetics. In / Genetics and Genomics of the Brassicaceae. Edited by Bancroft I, Schmidt R. New York: Springer Verlag; 2011:347鈥?72.
    41. Comai, L, Tyagi, AP, Winter, K, Holmes-Davis, R, Reynolds, SH, Stevens, Y, Byers, B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12: pp. 1551-1568 CrossRef
    42. Madlung, A, Tyagi, AP, Watson, B, Jiang, H, Kagochi, T, Doerge, RW, Martienssen, R, Comai, L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41: pp. 221-230 CrossRef
    43. Hollister, J, Arnold, B, Svedin, E, Xue, K, Dilkes, B, Bomblies, K (2012) Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8: pp. e1003093 CrossRef
    44. Yant, L, Hollister, JD, Wright, KM, Arnold, BJ, Higgins, JD, Franklin, FCH, Bomblies, K (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23: pp. 2151-2156 CrossRef
    45. Hunter B, Bomblies K: Progress and promise in using Arabidopsis to study adaptation, divergence and speciation. In / The Arabidopsis Book 2010, Volume 8. Edited by Torii K. Rockville, MD: American Society of Plant Biologists; 2010:e0138.
    46. Hu, TT, Pattyn, P, Bakker, EG, Cao, J, Cheng, JF, Clark, RM, Fahlgren, N, Fawcett, JA, Grimwood, J, Gundlach, H, Haberer, G, Hollister, JD, Ossowski, S, Ottilar, RP, Salamov, AA, Schneeberger, K, Spannagl, M, Wang, X, Nasrallah, ME, Bergelson, J, Carrington, JC, Gaut, BS, Schmutz, J, Mayer, KFX, Peer, Y, Grigoriev, IV, Nordborg, M, Weigel, D, Guo, YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: pp. 476-481 CrossRef
    47. Koch, M, Dobes, C, Mitchell-Olds, T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20: pp. 338-350 CrossRef
    48. Jorgensen, MH, Ehrich, D, Schmickl, R, Koch, MA, Brysting, A (2011) Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol Biol 11: pp. e346 CrossRef
    49. Ross-Ibarra, J, Wright, SI, Foxe, JP, Kawabe, A, DeRose-Wilson, L, Gos, G, Charlesworth, D, Gaut, BS (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3: pp. e2411 CrossRef
    50. Mable, BK, Schierup, MH, Charlesworth, D (2003) Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity 90: pp. 422-431 CrossRef
    51. Mable, BK, Robertson, AV, Dart, S, DiBerardo, C, Witham, L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59: pp. 1437-1448 CrossRef
    52. Roux, C, Pauwels, M, Ruggiero, MV, Charlesworth, D, Castric, V, Vekemans, X (2013) Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and Arabidopsis lyrata. Mol Biol Evol 30: pp. 435-447 CrossRef
    53. M臎s铆膷ek, J (1970) Chromosome counts in Cardaminopsis arenosa agg. (Cruciferae). Preslia 42: pp. 225-248
    54. Tsuchimatsu, T, Kaiser, P, Yew, CL, Bachelier, JB, Shimizu, KK (2012) Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 8: pp. e1002838 CrossRef
    55. Koch, M, Mummenhoff, K, Hurka, H (1998) Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochem Syst Ecol 26: pp. 823-838 CrossRef
    56. Roux, C, Castric, V, Pauwels, M, Wright, SI, Saumitou-Laprade, P, Vekemans, X (2011) Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation?. PLoS One 6: pp. e26872 CrossRef
    57. Hayek A: / Flora von Steiermark. Berlin: Verlag von Gebr眉der Borntr盲ger; 1908鈥?914
    58. M臎s铆膷ek, J Cardaminopsis. In: Marhold, K, Hind谩k, F eds. (1998) Zoznam ni啪拧铆ch a vy拧拧铆ch rastl铆n Slovenska 鈥?Checklist of non-vascular and vascular plants of Slovakia. VEDA, Bratislava, pp. 395-396
    59. Koln铆k, M Arabidopsis. In: Marhold, K, M谩rtonfi, P, Mereda, P, Mr谩z, P eds. (2012) Chromosome number Survey of The Ferns and Flowering Plants of Slovakia. VEDA, Bratislava, pp. 94-102
    60. Jakobsson, M, Hagenblad, J, Tavar茅, S, S盲ll, T, Halld茅n, C, Lind-Halld茅n, C, Nordborg, M (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Molec Biol Evol 23: pp. 1217-1231 CrossRef
    61. Schmuths, H, Meister, A, Horres, R, Bachmann, K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93: pp. 317-321 CrossRef
    62. Johnston, SP, Pepper, AE, Hall, AE, Chen, ZF, Hodnett, G, Drabek, J, Lopez, R, Price, HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95: pp. 229-235 CrossRef
    63. Lysak, MA, Koch, MA, Leitch, IJ, Beaulieau, JM, Meister, A (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26: pp. 85-98 CrossRef
    64. Wolf DE, Steets JA, Houliston GJ, Takebayashi N: Genome size variation and evolution in a allotetraploid Arabidopsis kamchatica and its parents, Arabidopsis lyrata and Arabidopsis halleri . / AoB PLANTS 2014, 6: doi:10.1093/aobpla/plu025.
    65. Dart, S, Kron, P, Mable, BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Canad J Bot 82: pp. 185-197 CrossRef
    66. J酶rgensen, MH, Ehrich, D, Schmickl, R, Koch, MA, Brysting, AK (2011) Interspecific and interploidal gene flow in central european Arabidopsis (Brassicaceae). BMC Evol Biol 11: pp. e346 CrossRef
    67. Al-Shebaz, IA (2010) Arabidopsis. Flora of North America. Oxford University Press, Oxford, pp. 447-449
    68. Doyle, JJ, Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: pp. 11-15
    69. Dobe拧, CH, Mitchell-Olds, T, Koch, MA (2004) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. x divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13: pp. 349-370 CrossRef
    70. Dobes, C, Mitchell-Olds, T, Koch, M (2004) Intraspecific diversification in North American Arabis drummondii, A. 脳divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers 鈥?an integrative approach. Am J Bot 91: pp. 2087-2101 CrossRef
    71. Clauss, MJ, Cobban, H, Mitchell-Olds, T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol Ecol 11: pp. 591-601 CrossRef
    72. Dole啪el, J, Greilhuber, J, Suda, J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2: pp. 2233-2244 CrossRef
    73. Temsch, EM, Greilhuber, J, Krisai, R (2010) Genome size in liverworts. Preslia 82: pp. 63-80
    74. Dole啪el, J, Barto拧, J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95: pp. 99-110 CrossRef
    R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
    75. Dolezel, J, Sgorbati, S, Lucretti, S (1992) Comparison of three fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 85: pp. 625-631 CrossRef
    76. Kiefer, M, Schmickl, R, German, D, Lysak, M, Al-Shehbaz, IA, Franzke, A, Mummenhoff, K, Stamatakis, A, Koch, MA (2014) BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol 55: pp. e3 CrossRef
    77. Koch, MA, Dobe拧, C, Matschinger, M, Bleeker, W, Vogel, J, Kiefer, M, Mitchell-Olds, T (2005) Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22: pp. 1032-1043 CrossRef
    78. Dobe拧, C, Kiefer, C, Kiefer, M, Koch, MA (2007) Plastidic trnFUUC pseudogenes in North American genus Boechera (Brassicaceae): mechanistic aspects of evolution. Plant Biol 9: pp. 502-515 CrossRef
    79. Koch, MA, Dobe拧, C, Kiefer, C, Schmickl, R, Klime拧, L, Lysak, MA (2007) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24: pp. 63-73 CrossRef
    80. Schmickl R, Kiefer C, Dobe拧 C, Koch MA: Evolution of trn F(GAA) pseudogenes in cruciferous plants. / Plant Syst Evol 2008, [doi:10.1007/s00606-008-0030-2]
    81. M眉ller, K, Quandt, D, M眉ller, J, Neinhuis, C (2005) PhyDE, Version 0.92: Phylogenetic Data Editor.
    82. Clement, M, Posada, D, Crandall, KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: pp. 1657-1659 CrossRef
    83. Templeton, AR, Crandall, KA, Sing, CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: pp. 619-633
    84. Stamatakis A: RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. / Bioinformatics 2014, doi:10.1093/bioinformatics/btu033.
    85. Swofford, DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, MA
    86. Huson, DH, Bryant, D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: pp. 254-267 CrossRef
    87. Excoffier, L, Lischer, HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Eco Res 10: pp. 564-567 CrossRef
    88. Nei, M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York
    89. Pritchard, JK, Stephens, M, Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155: pp. 945-959
    90. Hubisz, M, Falush, D, Stephens, M, Pritchard, JK (2009) Inferring weak population structure with the assistance of sample group information. Molec Ecol Res 9: pp. 1322-1332 CrossRef
    91. Ehrich, D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6: pp. 603-604 CrossRef
    92. Rosenberg, NA, Pritchard, JK, Weber, JL, Cann, HM, Kidd, KK, Zhivotovsky, LA, Feldman, MW (2002) Genetic structure of human populations. Science 298: pp. 2381-2385 CrossRef
    93. Evanno, G, Regnaut, S, Goudet, J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: pp. 2611-2620 CrossRef
    94. Earl, DA, vonHoldt, BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Cons Genet Res 4: pp. 359-361 CrossRef
    95. Jakobsson, M, Rosenberg, NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: pp. 1801-1806 CrossRef
    96. Rosenberg, NA (2007) Documentation for Distruct Software: Version 1.1. University of Michigan, Michigan
    97. Mable, BK, Beland, J, Berardo, C (2004) Inheritance and dominance of self-incompatibility alleles in polyploid Arabidopsis lyrata. Heredity 93: pp. 476-486 CrossRef
    98. S盲ll, T, Lind-Halld茅n, C, Jakobsson, M, Halld茅n, C (2004) Mode of reproduction in Arabidopsis suecica. Hereditas 141: pp. 313-317 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. Results Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. Conclusions Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700