On the Initial Conditions and Solutions of the Semiclassical Einstein Equations in a Cosmological Scenario
详细信息    查看全文
  • 作者:1. II. Institut für Theoretische Physik ; Universit?t Hamburg ; Luruper Chaussee 149 ; 22761 Hamburg ; Germany2. Dipartimento di Matematica ; Università di Roma “Tor Vergata- Via della Ricerca Scientifica ; 00133 Roma ; Italy
  • 刊名:Communications in Mathematical Physics
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:305
  • 期:3
  • 页码:563-604
  • 全文大小:484.7 KB
  • 参考文献:1. Anderson P.R.: Effects Of Quantum Fields On Singularities And Particle Horizons In The Early Universe. 3. The Conformally Coupled Massive Scalar Field. Phys. Rev. D 32, 1302 (1985)
    2. Anderson P.R.: Effects Of Quantum Fields On Singularities And Particle Horizons In The Early Universe. 4. Initially Empty Universes. Phys. Rev. D 33, 1567 (1986)
    3. Anderson P.R., Eaker W.: Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes. Phys. Rev. D 61, 024003 (2000)
    4. B?r, C., Ginoux, N., Pf?ffle, F.: “Wave equations on Lorentzian manifolds and quantization”. ESI Lectures in Mathematics and Physics, Zürich: European Math. Soc. Publishing House, 2007.
    5. Brevik I., Odintsov S.D.: Quantum Annihilation of Anti-de Sitter Universe. Phys. Lett. B475, 247 (2000)
    6. Brunetti R., Duetsch M., Fredenhagen K.: Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)
    7. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)
    8. Brunetti, R., Fredenhagen, K.: “Quantum Field Theory on Curved Backgrounds.” In: Lecture Notes in Physics 786, B?r, C., Fredenhagen, K., eds. Berlin-Heidelberg-New York: Springer, 2009, pp. 129–156
    9. Brunetti R., Fredenhagen K., K?hler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)
    10. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)
    11. Bunch T.S., Davies P.C.W.: Quantum Fields theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A 360, 117 (1978)
    12. Dappiaggi C., Fredenhagen K., Pinamonti N.: Stable cosmological models driven by a free quantum scalar field. Phys. Rev. D 77, 104015 (2008)
    13. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006)
    14. Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129–1163 (2009)
    15. Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009)
    16. Degner A., Verch R.: Cosmological particle creation in states of low energy. J. Math. Phys. 51, 022302 (2010)
    17. DeWitt B.S., Brehme R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960)
    18. Dimock J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)
    19. Duistermaat J.J., H?rmander L.: Fourier integral operators II. Acta Math. 128, 183–269 (1972)
    20. Eltzner, B., Gottschalk, H.: “Dynamical Backreaction in Robertson-Walker Spacetime.” http://arXiv.org/abs/1003.3630v2 [math-ph], 2010
    21. Fewster C.J.: A general worldline quantum inequality. Class. Quant. Grav. 17, 1897–1911 (2000)
    22. Flanagan E.E., Wald R.M.: Does backreaction enforce the averaged null energy condition in semiclassical gravity?. Phys. Rev. D 54, 6233 (1996)
    23. Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273 (1990)
    24. Friedlander, F.G.: “The wave equation on a curved space-time.” Cambridge: Cambridge Univeristy Press, 1975
    25. Gazzola G., Nemes M.C., Wreszinski W.F.: On the Casimir energy for a massive quantum scalar field and the cosmological constant. Ann. Phys. 324, 2095–2107 (2009)
    26. Gottl?ber S., Müller V.: Vacuum polarization and scalar field effects in the early Universe. Astron. Nachr. 307, 285–287 (1986)
    27. Haag, R.: “Local quantum physics: Fields, particles, algebras”. Second Revised and Enlarged Edition, Berlin-Heidelberg-New York: Springer, 1992
    28. Hamilton R.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65 (1982)
    29. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)
    30. Hollands, S.: “Aspects of Quantum Field Theory in Curved Spacetime”. Ph.D. Thesis, University of York, 2000, advisor B.S. Kay
    31. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)
    32. Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)
    33. Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123 (2003)
    34. Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)
    35. H?rmander, L.: “The Analysis of Linear Partial Differential Operators I”. Second edition, Berlin: Springer-Verlag, 1989
    36. Hu, B.L., Verdaguer, E.: “Stochastic Gravity: Theory and Applications.” Living Rev. Rel. 11, 3 (2008); Living Rev. Rel. 7, 3 (2004)
    37. Junker W., Schrohe E.: Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties. Ann. Henri Poincaré 3(6), 1113–1181 (2002)
    38. Kay B.S., Wald R.M.: Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207, 49 (1991)
    39. Lüders C., Roberts J.E.: Local Quasiequivalence and Adiabatic Vacuum States. Commun. Math. Phys. 134, 29–63 (1990)
    40. Moretti V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189 (2003)
    41. Moretti V.: Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable algebra correspondence. Commun. Math. Phys. 268, 727 (2006)
    42. Moretti V.: Quantum Out-States Holographically Induced by Asymptotic Flatness: Invariance under Spacetime Symmetries, Energy Positivity and Hadamard Property. Commun. Math. Phys. 279, 3175 (2008)
    43. Nojiri S., Odintsov S.D.: Effective Action for Conformal Scalars and Anti-Evaporation of Black Holes. Int. J. Mod. Phys. A14, 1293–1304 (1999)
    44. Olbermann H.: States of low energy on Robertson-Walker spacetimes. Class. Quantum. Grav. 24, 5011–5030 (2007)
    45. Parker L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)
    46. Parker L.: Quantized Fields and Particle Creation in Expanding Universe. I. Phys. Rev. D183, 1057 (1969)
    47. Parker L., Simon J.Z.: Einstein Equation with Quantum Corrections Reduced to Second Order. Phys. Rev. D 47, 1339 (1993)
    48. Parker, L., Raval, A.: Non-perturbative effects of vacuum energy on the recent expansion of the universe. Phys. Rev. D 60, 063512 (1999) [Erratum-ibid. D 67, 029901 (2003)]
    49. Perez-Nadal G., Roura A., Verdaguer E.: Backreaction from non-conformal quantum fields in de Sitter spacetime. Class. Quant. Grav. 25, 154013 (2008)
    50. Pinamonti N.: Conformal generally covariant quantum field theory: The scalar field and its Wick products. Commun. Math. Phys. 288, 1117 (2009)
    51. Radzikowski M.J.: Micro-Local Approach To The Hadamard Condition In Quantum Field Theory On Curved Space-Time. Commun. Math. Phys. 179, 529 (1996)
    52. Roura A., Verdaguer E.: Mode decomposition and renormalization in semiclassical gravity. Phys. Rev. D 60, 107503 (1999)
    53. Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time. Rev. Math. Phys. 13, 1203 (2001)
    54. Sanders K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295(2), 485–501 (2010)
    55. Shapiro I.L.: Effective Action of Vacuum: Semiclassical Approach. Class. Quant. Grav. 25, 103001 (2008)
    56. Shapiro I.L., Sola J.: Massive fields temper anomaly-induced inflation. Phys. Lett. B 530, 10 (2002)
    57. Starobinsky A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B91, 99 (1980)
    58. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space-times: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514 (2002)
    59. Vilenkin A.: Classical And Quantum Cosmology Of The Starobinsky Inflationary Model. Phys. Rev. D32, 2511 (1985)
    60. Wald R.M.: The Back Reaction Effect in Particle Creation in Curved Spacetime. Commun. Math. Phys. 54, 1–19 (1977)
    61. Wald R.M.: Axiomatic Renormalization Of Stress Tensor Of A Conformally Invariant Field In Conformally Flat Spacetimes. Ann. Phys. 110, 472 (1978)
    62. Wald R.M.: Trace Anomaly Of A Conformally Invariant Quantum Field In Curved Space-Time. Phys. Rev. D 17, 1477 (1978)
  • 作者单位:http://www.springerlink.com/content/t56t1q7675840855/
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
In this paper we shall discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we shall deal with this problem in the realm of cosmological spacetimes by analyzing the Einstein equations in a semiclassical fashion. More precisely, we shall show that, at least on small intervals of time, solutions for this interacting system exist. This result will be achieved providing an iteration scheme and showing that the series, obtained starting from the massless solution, converges in the appropriate Banach space. The quantum states with good ultraviolet behavior (Hadamard property), used in order to obtain the backreaction, will be completely determined by their form on the initial surface if chosen to be lightlike. Furthermore, on small intervals of time, they do not influence the behavior of the exact solution. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we shall show that the end-point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we shall comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700