Classification of discrete systems on a square lattice
详细信息    查看全文
  • 作者:R. Hernández Heredero (1) rafahh@euitt.upm.es
    D. Levi (2) levi@roma3.infn.it
    C. Scimiterna (2) scimiterna@fis.uniroma3.it
  • 关键词:multiscale expansion – difference equation – integrable model – linearizable model
  • 刊名:Theoretical and Mathematical Physics
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:172
  • 期:2
  • 页码:1097-1108
  • 全文大小:457.2 KB
  • 参考文献:1. F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991).
    2. A. Degasperis, S. V. Manakov, and P. M. Santini, Phys. D, 100, 187–211 (1997).
    3. A. Degasperis and M. Procesi, “Asymptotic integrability,” in: Symmetry and Perturbation Theory, SPT98 (A. Degasperis and G. Gaeta, eds.), World Scientific, Singapore (1999), pp. 23–37; A. Degasperis, “Multiscale expansion and integrability of dispersive wave equations,” in: Integrability (Lect. Notes Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 215–244.
    4. Y. Kodama and A. V. Mikhailov, “Obstacles to asymptotic integrability,” in: Algebraic Aspects of Integrable Systems (Prog. Nonlinear Diff. Eq. Their Appl., Vol. 26, A. S. Fokas and I. M. Gelfand, eds.), Birkh?user, Boston, Mass. (1996), pp. 173–204; Y. Hiraoka and Y. Kodama, “Normal form and solitons,” in: Integrability (Lect. Notes Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 175–214.
    5. A. Degasperis, D. D. Holm, and A. Hone, Theor. Math. Phys., 133, 1463–1474 (2002).
    6. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Phys. A, 41, 315208 (2008).
    7. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Nonlinear Math. Phys., 15 (Suppl. 3), 323–333 (2008).
    8. D. Levi, J. Phys. A, 38, 7677–7689 (2005); arXiv:nlin/0505061v1 (2005).
    9. M. Agrotis, S. Lafortune, and P. G. Kevrekidis, Discrete Contin. Dyn. Syst., Suppl., 22–29 (2005).
    10. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Phys. A, 40, F831–F840 (2007).
    11. J. Leon and M. Manna, J. Phys. A, 32, 2845–2869 (1999).
    12. D. Levi and R. Hernández Heredero, J. Nonlinear Math. Phys., 12 (Suppl. 1), 440–448 (2005).
    13. D. Levi and M. Petrera, J. Math. Phys., 47, 043509 (2006); arXiv:math-ph/0510084v1 (2005).
    14. S. W. Schoombie, J. Comput. Phys., 101, 55–70 (1992).
    15. F. Calogero and W. Eckhaus, Inverse Problems, 3, L27–L32, 229–262 (1987); 4, 11–33 (1987); F. Calogero, A. Degasperis, and X. Ji, J. Math. Phys., 42, 2635–2652 (2001); 41, 6399–6443 (2000); F. Calogero and A. Maccari, “Equations of nonlinear Schr?dinger type in 1+1 and 2+1 dimensions obtained from integrable PDEs,” in: Inverse Problems: An Interdisciplinary Study (Adv. Electronics Electron Phys., Vol. 19, P. C. Sabatier, ed.), Acad. Press, London (1987), pp. 463–480.
    16. C. Scimiterna and D. Levi, SIGMA, 1006, 070 (2010); arXiv:1005.5288v2 [nlin.SI] (2010).
    17. R. Hernández Heredero, D. Levi, and C. Scimiterna, J. Phys. A, 43, 502002 (2010); arXiv:1011.0141v1 [nlin.SI] (2010).
    18. C. Scimiterna, “Multiscale techniques for nonlinear difference equations,” Doctoral dissertation, http://www.fis.uniroma3.it/dottoratotesi/ScimiternaSCIMITERNA.pdf, Roma Tre Universitá Degli Studi, Rome (2009).
    19. Y. Kodama, Phys. Lett. A, 107, 245–249 (1985).
    20. Y. Kodama, “Nearly integrable systems: Normal form and solitons,” in: Nonlinear Evolutions (Proc. 4th Workshop on Nonlinear Evolution Equations and Dynamical Systems, Balaruc-les-Bains, 11–25 June 1987, J. J. P. Leon, ed.), World Scientific, Teaneck, N. J. (1988), pp. 559–570.
    21. M. Procesi, “Non linear waves, multiscale methods, and integrability master degree,” Doctoral dissertation, Physics Department, “La Sapienza” University, Rome (1997).
    22. D. Levi and C. Scimiterna, Appl. An., 89, 507–527 (2010).
    23. D. Levi and C. Scimiterna, SIGMA, 1107, 079 (2011).
    24. D. Levi and R. I. Yamilov, J. Phys. A, 42, 454012 (2009); arXiv:0902.4421v1 [nlin.SI] (2009); 44, 145207 (2011); arXiv:1011.0070v2 [nlin.SI] (2010).
    25. C. Scimiterna, B. Grammaticos, and A. Ramani, J. Phys. A, 44, 032002 (2011).
    26. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Commun. Math. Phys., 233, 513–543 (2003); arXiv:nlin/0202024v2 (2002).
  • 作者单位:1. Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Madrid, Spain2. Dipartimento di Ingegneria Elettronica, Università degli Studi Roma Tre and Sezione INFN, Roma Tre, Rome, Italy
  • ISSN:1573-9333
文摘
We consider the classification up to a M?bius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700