Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas
详细信息    查看全文
  • 作者:Mohd. Mostofa Kamal ; Sandra Savocchia ; Kurt D. Lindbeck…
  • 关键词:Biology ; Biocontrol ; Sclerotinia ; Oilseed ; Brassica
  • 刊名:Australasian Plant Pathology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:1-14
  • 全文大小:991 KB
  • 参考文献:Abawi G, Grogan R (1979) Epidemiology of plant diseases caused by Sclerotinia species. Phytopathology 69:899CrossRef
    Abawi G, Polach F, Molin W (1975a) Infection of bean by ascospores of Whetzelinia sclerotiorum. Phytopathology 65(6):673–678CrossRef
    Abawi G, Provvidenti R, Hunter J (1975b) Evaluating bean germplasm for resistance to Wetzelinia sclerotiorum. Ann Proc Am Phytopathol Soc 2:50
    Adams P (1979) Comparison of antagonists of Sclerotinia species. Phytopathology 79(12):1345–1347CrossRef
    Adams P, Ayers W (1979) Ecology of Sclerotinia species. Phytopathology 69(8):896–899CrossRef
    Adams P, Ayers W (1981) Sporidesmium sclerotivorum: distribution and function in natural biological control of sclerotial fungi. Phytopathology 71:90–93CrossRef
    Aghajani MA, Safaei N, Alizadeh A (2008) Sclerotinia infection situation of canola in Golestan province. In: The 18th Iranian Plant Protection Congress, Hamedan, Iran p 52
    Agrios GN (2005) Plant pathology, vol 5. Elsevier Academic, New York
    Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2012) The plant associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174PubMed CrossRef
    Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30(1):603–635PubMed CrossRef
    Anonymous (2001) Canola growers manual, Canola council of Canada. http://​www.​canolacouncil.​org/​crop-production/​canola-grower’s-manual-contents/​chapter-10c-diseases/​chapter-10c#sclerotiniastemr​ot . Accessed 14 April 2015
    Asirifi K, Morgan WC, Parbery D (1994) Suppression of Sclerotinia soft rot of lettuce with organic soil amendments. Anim Prod Sci 34(1):131–136CrossRef
    Ayers W, Adams P (1979) Mycoparasitism of sclerotia of Sclerotinia and Sclerotium species by Sporidesmium sclerotivorum. Can J Microbiol 25(1):17–23PubMed CrossRef
    Bailey KL (1996) Diseases under conservation tillage systems. Can J Plant Sci 76(4):635–639CrossRef
    Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72(2):169–180CrossRef
    Barbetti MJ, Banga SK, Fu TD, Li YC, Singh D, Liu SY, Ge XT, Banga SS (2014) Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica 197(1):47–59CrossRef
    Bardin S, Huang H (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23(1):88–98CrossRef
    Bary A, Garnsey HEF, Balfour IB (1887) Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon, OxfordCrossRef
    Bateman D, Beer S (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211PubMed
    Bell A, Liu L, Reidy B, Davis R, Subbarao K (1998) Mechanisms of subsurface drip irrigation-mediated suppression of lettuce drop caused by Sclerotinia minor. Phytopathology 88(3):252–259PubMed CrossRef
    Bevivino A (2000) Efficacy of Burkholderia cepacia MCI7 in disease suppression and growth promotion of maize. Biol Fertil Soils 31:225–231CrossRef
    Bevivino A, Peggion V, Chiarini L, Tabacchioni S, Cantale C, Dalmastri C (2005) Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Res Microbiol 156(10):974–983PubMed CrossRef
    Blanchette BL, Auld DL (1978) Screening field peas for resistance to white mold. Crop Sci 18(6):977–978CrossRef
    Bourdôt G, Hurrell G, Saville D, DeJong D (2001) Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: ascospore dispersal. Biocontrol Sci Tech 11(1):119–139CrossRef
    Boyetchko SM (1999) Biological control agents of canola and rapeseed diseases-status and practical approaches. In: Mukerji KG, Chamóla ВP, Upadhyay RK (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer, NY, pp 51–71CrossRef
    Buchwaldt L, Yu F, Rimmer S, Hegedus D (2003) Resistance to Sclerotinia sclerotiorum in a Chinese Brassica napus cultivar. In: 8th International Congress of Plant Pathology, Christchurch, New Zealand
    Caesar AJ, Pearson RC (1982) Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. 73:1024–1030
    Campbell W (1947) A new species of Coniothyrium parasitic on sclerotia. Mycologia 190–195
    Cañizares MC, Pérez-Artés E, García-Pedrajas MD (2014) The complete nucleotide sequence of a novel partitivirus isolated from the plant pathogenic fungus Verticillium albo-atrum. Arch Virol 159(11):3141–3144PubMed CrossRef
    Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12(11):2191–2199PubMedCentral PubMed CrossRef
    Chaudhury B (1993) Yield loss estimation by (Sclerotinia sclerotiorum)(Lib.) de Bary. J Agric Anim Sci 14:113
    Chen Y, Gao X, Chen Y, Qin H, Huang L, Han Q (2014) Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biol Control 78:67–76CrossRef
    Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14(6):277–286PubMed CrossRef
    Clarkson JP, Phelps K, Whipps JM, Young CS, Smith JA, Watling M (2004) Forecasting Sclerotinia disease on lettuce: toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology 94(3):268–279PubMed CrossRef
    Coffelt T, Porter D (1982) Screening peanuts for resistance to Sclerotinia blight. Plant Dis 66(5):385–387CrossRef
    Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol Soc
    Cotton P, Rascle C, Fevre M (2002) Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol Lett 213(2):239–244PubMed CrossRef
    De Vrije T, Antoine N, Buitelaar R, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones E, Lüth P, Oostra J (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56(1):58–68PubMed CrossRef
    Dueck J (1977) Sclerotinia in rapeseed. Can Agric 22:7–9
    Dueck J, Morrall R, McKenzie D (1983) Control of Sclerotinia sclerotiorum in rapeseed with fungicides. Can J Plant Pathol 5(4):289–293CrossRef
    Dueckz J, Sedun FS (1983) Distribution of Sclerotinia sclerotiorum in western Canada as indicated by sclerotial levels in rapeseed unloaded in Vancouver. Can Plant Dis Surv 63(1):27–29
    Duncan RW (2003) Evaluation of host tolerance, biological, chemical, and cultural control of Sclerotini sclerotiorum in sunflower (Helianthus annuus L.). University of Manitoba, Manitoba
    Fernando WGD, Nakkeeran S, Zhang Y (2004) Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. In: Recent Research in Developmental and Environmental Biology, vol 1, vol 2. Research Signpost, Kerala, pp 329–347
    Fernando W, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964CrossRef
    Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26(2):100–107CrossRef
    Fuller P, Coyne D, Steadman J (1984) Inheritance of resistance to white mold disease in a diallel cross of dry beans. Crop Sci 24(5):929–933CrossRef
    Gan LI, Meng JL, Gan L (1999) Analysis on the genetic diversity of loci homologous to disease resistant genes in Brassica genus. J Huazhong Agric Univ 18:540–542
    Gao X, Han Q, Chen Y, Qin H, Huang L, Kang Z (2013) Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7. Biocontrol Sci Tech 24(1):39–52CrossRef
    Ghasolia R, Shivpuri A, Bhargava A (2004) Sclerotinia rot of Indian mustard (Brassica juncea) in Rajasthan. Indian Phytopathol 57:76–79
    Gilmour G (2001) Canola growers losing Benlate fungicide. Manitoba Coop 58:1
    Girard V, Fèvre M, Bruel C (2004) Involvement of cyclic AMP in the production of the acid protease Acp1 by Sclerotinia sclerotiorum. FEMS Microbiol Lett 237(2):227–233PubMed
    Godoy G, Steadman J, Dickman M, Dam R (1990a) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37(3):179–191CrossRef
    Godoy G, Steadman J, Yuen G (1990b) Bean blossom bacteria have potential for biological control of white mold disease caused by Sclerotinia sclerotiorum. Annu Rep Bean Improv Coop 33:45–46
    Gracia-Garza J, Neumann S, Vyn T, Boland G (2002) Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum. Can J Plant Pathol 24(2):137–143CrossRef
    Gulya T, Rashid KY, Masirevic SM (1997) Sunflower technology and production. In: Schneiter AA (ed) Sunflower Diseases. vol 35. Madison, Wisconsin 263–379
    Hannusch D, Boland G (1996) Influence of air temperature and relative humidity on biological control of white mold of bean (Sclerotinia sclerotiorum). Phytopathology 86(2):156–162CrossRef
    Hayes RJ, Wu BM, Pryor BM, Chitrampalam P, Subbarao KV (2010) Assessment of resistance in lettuce (Lactuca sativa L.) to mycelial and ascospore infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. HortScience 45(3):333–341
    Hebbar KP, Martel MH, Heulin T (1994) Burkholderia cepacia, a plant growth promoting rhizobacterial associate of maize. In: In: Ryder MH, Stephens PM, Bowen GD (eds) Third international workshop on plant growth-promoting rhizobacteria. CSIRO, Adelaide, pp 201–203
    Heungens K, Parke J (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Appl Environ Microbiol 66(12):5192–5200PubMedCentral PubMed CrossRef
    Hind-Lanoiselet T, Lewington F (2004) Canola concepts: managing sclerotinia. NSW Department of Primary Industries AgNote: 490
    Hind-Lanoiselet T, Ash GJ, Murray GM (2003) Prevalence of sclerotinia stem rot of canola in New South Wales. Anim Prod Sci 43(2):163–168CrossRef
    Hind-Lanoiselet T, Lewington F, Lindbeck K (2008) Managing sclerotinia stem rot in canola. NSW Department of Primary Industries, Australia AgReport
    Howell C, Stipanovic R (1995) Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology 85(4):469–472CrossRef
    Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Jing M, Liao X, Che Z, Liao X (2013a) Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biol Control 70:54–64CrossRef
    Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Zhang S, Liao X (2013b) Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Prot 52:151–158CrossRef
    Huang H (1978) Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Can J Bot 56(18):2243–2246CrossRef
    Hunter J, Abawi G, Crosier D (1978) Effects of timing, coverage, and spray oil on control of white mold of snap bean with benomyl. Plant Dis Rep 62(7):633–637
    Jacobsen B, Zidack N, Larson B (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94(11):1272–1275PubMed CrossRef
    Jayaswal R, Fernandez M, Upadhyay R, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr Microbiol 26(1):17–22PubMed CrossRef
    Jiang D, Fu Y, Guoqing L, Ghabrial SA (2013) Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv Virus Res 86
    Kamal MM, Lindbeck KD, Savocchia S, Ash GJ (2015) Biological control of sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol 64:1375–1384
    Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64(10):3939–3947PubMedCentral PubMed
    Kapoor K, Sharma S, Gangopadhyay S (1989) Assessment of resistance in eggplant against Sclerotinia wilt with a new screening technique. Capsicum Newsl 8:70
    Khangura R, MacLeod WJ (2012) Managing the risk of Sclerotinia stem rot in canola. Farm note vol 546. Department of Agriculture and Food, Western Australia
    Khangura R, Van Burgel A, Salam M, Aberra M, MacLeod WJ (2014) Why Sclerotinia was so bad in 2013? Understanding the disease and management options [http://​www.​giwa.​org.​au/​pdfs/​2014/​Presented_​Papers/​Khangura%20​et%20​al%20​presentation%20​paper%20​CU2014%20​-DR.​pdf ]. Accessed 28 July 2015
    Kharbanda P, Tewari J (1996) Integrated management of canola diseases using cultural methods. Can J Plant Pathol 18(2):168–175CrossRef
    Kirkegaard JA, Robertson MJ, Hamblin P, Sprague SJ (2006) Effect of blackleg and sclerotinia stem rot on canola yield in the high rainfall zone of southern New South Wales, Australia. Aust J Agric Res 57(2):201–212CrossRef
    Kohli Y, Kohn LM (1998) Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet Biol 23(2):139–149PubMed CrossRef
    Koike S (2000) Occurrence of stem rot of basil, caused by Sclerotinia sclerotiorum, in coastal California. Plant Dis 84(12):1342–1342CrossRef
    Krueger W, Stoltenberg J (1983) Control of rape diseases II. Measures for disease reduction caused by Sclerotinia sclerotiorum with consideration to economical aspects. Phytopathol Z 108:114–126CrossRef
    Krüger W (1975) Influence of the weather on attack of rape by Sclerotinia sclerotiorum (Lib.) de Bary. Nachrichtenbl Deutsch Pflanzenschutzdienst 27:1–6
    Kurle JE, Grau CR, Oplinger ES, Mengistu A (2001) Tillage, crop sequence, and cultivar effects on Sclerotinia stem rot incidence and yield in soybean. Agron J 93(5):973–982CrossRef
    Lamey H, Nelson B, Gulya T (1998) Incidence of Sclerotinia stem rot on canola in North Dakota and Minnesota, 1991–1997. In: Proc. Int. Sclerotinia Workshop, Fargo, ND 7–9
    Lamey A, Knodel J, Endres G, Andol K, Ashley R, Barondeau D, Craig B, Crary V, Fore Z, Johnson N (2001) Canola disease survey in Minnesota and North Dakota, vol 71. North Dakota State University, North Dakota
    Le Tourneau D (1979) Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69(8):887–890CrossRef
    Li W, Roberts D, Dery P, Meyer S, Lohrke S, Lumsden R, Hebbar K (2002) Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21(2):129–135CrossRef
    Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN (2006) Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 114(4):345–355CrossRef
    Li C, Liu S, Sivasithamparam K, Barbetti M (2009) New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and B. juncea germplasm screened under Western Australian conditions. Aust Plant Pathol 38(2):149–152CrossRef
    Lindbeck K, Davidson J, Khangura R (2014) Managing sclerotinia stem rot in canola (Northern, Southern and Western regions). Sclerotinia stem rot in canola Fact Sheet Grain Research and Development Corporation, Australia
    Liu H, Fu Y, Jiang D, Li G, Xie J, Peng Y, Yi X, Ghabrial SA (2009) A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J Virol 83(4):1981–1991PubMedCentral PubMed CrossRef
    Lumsden R (1979) Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology 69(8):890–895CrossRef
    Luth P (2001) The biological fungicide Contans WG7-A preparation on the basis of the fungus Coniothyrium minitans. In: Proc. XI International Sclerotinia Workshop, Central Science Laboratory, York, UK 127–128
    Lüth P, Schulz RR, Pfeffer H (1993) The influence of bacterial antagonists on the infestation of a soil as well as on the yield of winter oilseed rape affected by Sclerotinia sclerotiorum. Zentralbl Mikrobiol 148:32–32
    Lynch JM, Ebben MH (1986) The use of microorganisms to control plant disease. J Appl Bacteriol Symp Suppl 61:115S–126S
    Lyons M, Dickson M, Hunter J (1987) Recurrent selection for resistance to white mold in Phaseolus species. J Am Soc Hortic Sci 112(1):149–152
    Mao W, Lumsden RD, Lewis JA, Hebbar PK (1998) Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis 82(3):294–299CrossRef
    Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22(3):339–345CrossRef
    McLaren D, Huang H, Rimmer S (1996) Control of apothecial production oí Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis 1373
    McLean D (1958) Role of dead flower parts in infection of certain crucifers by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Dis Rep 42:663–666
    McLoughlin TJ, Quinn JP, Bettermann A, Bookland R (1992) Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58:1760–1763PubMedCentral PubMed
    McSpadden Gardener BB, Driks A (2004) Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94(11):1244–1244PubMed CrossRef
    Meena PD, Kumar A, Chattopadhyay C and Sharma P (2009) Eco-friendly management of Sclerotinia rot in Indian mustard (Brassica juncea). Proc 16th Australian Research Assembly on Brassicas, Ballarat, Australia, September 14–16, pp 202–204
    Meena P, Awasthi R, Godika S, Gupta J, Kumar A, Sandhu P, Sharma P, Rai P, Singh Y, Rathi A (2011) Eco-friendly approaches managing major diseases of Indian Mustard. World Appl Sci J 12(8):1192–1195
    Meena P, Chattopadhyay C, Meena P, Goyal P, Kumar VR (2014) Shelf life and efficacy of talc-based bio-formulations of Trichoderma harzianum isolates in management of Sclerotinia rot of Indian mustard (Brassica juncea). Ann Plant Prot Sci 22(1):127–135
    Mehta N, Hieu N, Sangwan M (2012) Efficacy of various antagonistic isolates and species of against causing white stem rot of mustard. J Mycol Plant Pathol 42(2):244–250
    Merriman P, Pywell M, Harrison G, Nancarrow J (1979) Survival of sclerotia of Sclerotinia sclerotiorum and effects of cultivation practices on disease. Soil Biol Biochem 11(6):567–570CrossRef
    Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31(1):75–86
    Meyers E, Bisacchi G, Dean L, Liu W, Minassian B, Slusarchyk D, Sykes R, Tanaka S, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot 40(11):1515PubMed CrossRef
    Morrall R, Dueck J (1982) Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Can J Plant Pathol 4(2):161–168CrossRef
    Morrall R, Dueck J (1983) Sclerotinia stem rot of spring rapeseed in western Canada. In: Proceedings of 6th International Rapeseed Conference, Paris, France 17–19
    Morrall R, Duczek L, Sheard J (1972) Variations and correlations within and between morphology, pathogenicity, and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Can J Bot 50(4):767–786CrossRef
    Morrall R, Dueck J, McKenzie D, McGee D (1976) Some aspects of Sclerotinia sclerotiorum in Saskatchewan, 1970–75. Can Plant Dis Surv 56(2):56–62
    Mueller D, Dorrance A, Derksen R, Ozkan E, Kurle J, Grau C, Gaska J, Hartman G, Bradley C, Pedersen W (2002a) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Dis 86(1):26–31CrossRef
    Mueller D, Pedersen W, Hartman G (2002b) Effect of crop rotation and tillage system on Sclerotinia stem rot on soybean. Can J Plant Pathol 24(4):450–456CrossRef
    Mueller J, Barbercheck M, Bell M, Brownie C, Creamer N, Hitt A, Hu S, King L, Linker H, Louws F (2002c) Development and implementation of a long-term agricultural systems study: challenges and opportunities. HortTechnology 12(3):362–368
    Mukerji K, Chamola B, Upadhyay RK (eds) (1999) Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Press, New York
    Murray GM, Brennan JP (2012) The current and potential costs from diseases of oilseed crops in Australia. Grains Research & Development Corporation, Kingston, ACT, Australia
    Mündel HH, Huang H, Kozub G (1985) Sclerotinia head rot in safflower: assessment of resistance and effects on yield and oil content. Can J Plant Sci 65(2):259–265CrossRef
    Nelson B (1998) Biology of Sclerotinia. In: Proceedings of the Sclerotinia workshop. North Dakota State University, Fargo, North Dakota 9–12
    Nelson B, Helms T, Olson M (1991) Comparison of laboratory and field evaluations of resistance in soybean to Sclerotinia sclerotiorum. Plant Dis 75:662–665CrossRef
    Nelson BD, Christianson T, McClean P (2001) Effects of bacteria on sclerotia of Sclerotinia sclerotiorum. In: Proceedings of the XI international sclerotinia workshop, York, England 39–40
    Newton H, Sequeira L (1972) Ascospores as the primary infective propagule of Sclerotinia sclerotiorum in Wisconsin. Plant Dis Rep 56(9):798–802
    Pachenari A, Dix N (1980) Production of toxins and wall degrading enzymes by Gliocladium roseum. Trans Br Mycol Soc 74(3):561–566CrossRef
    Pal KK, Gardener BMS (2006) Biological control of plant pathogens. Plant Healt Inst 2:1117–1142
    Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39(1):225–258PubMed CrossRef
    Pathak A, Godika S, Jain P, Muralia S (2001) Effect of antagonistic fungi and seed dressing fungicides on the incidence of stem rot of mustard. Mycol Plant Pathol 31:327–329
    Pedersen E, Reddy M, Chakravarty P (1999) Effect of three species of bacteria on damping off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur J For Pathol 29(2):123–134CrossRef
    Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integr Pest Manag 3(2):1–7CrossRef
    Phillips A (1986) Factors affecting the parasitic activity of Gliocladium virens on sclerotia of Sclerotinia sclerotiorum and a note on its host range. J Phytopathol 116(3):212–220CrossRef
    Pope SJ, Varney PL, Sweet JB (1989) Susceptibility of cultivars of oilseed rape to S. sclerotiorum and the effect of infection on yield. Asp Appl Biol 23:451–456
    Poussereau N, Creton S, Billon-Grand G, Rascle C, Fevre M (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147(3):717–726PubMed CrossRef
    Purdy L (1956) Factors affecting apothecial production by Sclerotinia sclerotiorum. Phytopathology 46:409–410
    Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69(8):875–880CrossRef
    Rimmer SR, Buchwaldt L (1995) Diseases. In: Kimber DS, McGregor DI (eds) Brassica oilseeds, production and utilization. CAB International, Wallingford, pp 111–140
    Riou C, Freyssinet G, Fevre M (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol 57(5):1478–1484PubMedCentral PubMed
    Rodriguez M, Godeas A (2001) Comparative study of fungal antagonist Sclerotinia sclerotiorum. In: Proc XI International Sclerotinia Workshop, York, UK 125–126
    Saharan GS, Mehta N (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science Busines Media BV, The NetherlandsCrossRef
    Sandys‐Winsch D, Whipps J, Fenlon J, Lynch J (1994) The validity of in vitro screening methods in the search for fungal antagonists of Sclerotinia sclerotiorum causing wilt of sunflower. Biocontrol Sci Tech 4(3):269–277CrossRef
    Savchuk SC (2002) Evaluation of biological control of Sclerotinia scleroiorum on Canola (Brassica napus) in the lab, in the greenhouse, and in the field University of Manitoba, Manitiba, Canada
    Savchuk S, Dilantha Fernando W (2004) Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol 49(3):379–388PubMed CrossRef
    Sedun F, Brown J (1989) Comparison of three methods to assess resistance in sunflower to basal stem rot caused by Sclerotinia sclerotiorum and S. minor. Plant Dis 73(1):52–55CrossRef
    Sharma P, Kumar A, Meena P, Goyal P, Salisbury P, Gurung A, Fu T, Wang Y, Barbetti M, Chattopadhyay C (2009) Search for resistance to Sclerotinia sclerotiorum in exotic and indigenous Brassica germplasm. In: Proc. of 16th Australian Research Assembly on Brassicas, Ballarat, Victoria 1–5
    Sharma P, Meena PD, Verma PR, Saharan GS, Mehta N, Singh D, Kumar A (2015a) Sclerotinia sclerotiorum (Lib.) de Bary causing sclerotinia rot in oilseed brassicas: a review. J Oilsees Bras 6(Special):1–-44
    Sharma P, Verma PR, Meena PD, Kumar V, Singh D (2015b) Research progress analysis of sclerotinia rot (Sclerotinia sclerotiorum) of oilseed brassicas through bibliography. J Oilsees Bras 6(Special):45–125
    Shaw F, Ajrekar S (1915) The genus“Rhizoctonia” in India, vol 7. Memoirs of the department of agriculture, India Botanical series. Thacker Spink, India
    Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521PubMed CrossRef
    Shukla A (2005) Estimation of yield losses to Indian mustard (Brassica juncea) due to Sclerotinia stem rot. J Phytol Res 18(2):267–268
    Smith E, Boland G (1989) A reliable method for the production and maintenance of germinated Sclerotia of Sclerotinia sclerotiorum. Can J Plant Pathol 11(1):45–48CrossRef
    Srinivasan A, Kang I, Singh R, Kaur J (2001) Evaluation of selected Trichoderma isolates against Sclerotinia sclerotiorum causing white rot of Brassica napus L In: Proc XI International Sclerotinia Workshop, York, UK 143–144
    Steadman J (1979) Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904–907CrossRef
    Steadman JR (1983) White mold-A serious yield-limiting disease of bean. Plant Dis 67(4):346–350CrossRef
    Stelfox D, Williams J, Soehngen U, Topping R (1978) Transport of Sclerotinia sclerotiorum ascospores by rapeseed pollen in Alberta. Plant Dis Rep 62:576–579
    Teo B, Morrall R (1985) Influence of matric potentials on carpogenic germination of sclerotia of Sclerotinia sclerotiorum. II. A comparison of results obtained with different techniques. Can J Plant Pathol 7(4):365–369CrossRef
    Tu J (1980) Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology 70(7):670–674CrossRef
    Turkington T, Morrall R, Gugel R (1991) Use of petal infestation to forecast Sclerotinia stem rot of canola: evaluation of early bloom sampling, 1985–90. Can J Plant Pathol 13(1):50–59CrossRef
    Uecker F, Ayers W, Adams P (1978) A new hyphomycete on sclerotia of Sclerotinia sclerotiorum. Mycotaxon 7:275–282
    Venette J (1998) Sclerotinia spore formation, transport and infection. In: Proc of the XI International Sclerotinia Workshop, York, UK 4–7
    Wang H, Liu G, Zheng Y, Wang X, Yang Q (2004) Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Sci Agric Sin 1:3
    Whipps JM (1987) Behaviour of fungi antagonistic to Sclerotinia sclerotiorum on plant tissue segments. J Gen Microbiol 133(6):1495–1501
    Whipps J, Budge S (1990) Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol Res 94(5):607–612CrossRef
    Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330CrossRef
    Williams JR, Stelfox D (1980) Influence of farming practices in Alberta on germination and apothecium production of sclerotia of Sclerotinia sclerotiorum. Can J Plant Pathol 2(3):169–172CrossRef
    Winter W, Burkhard L, Baenziger I, Krebs H, Gindrat D, Frei P (1993) Rape diseases: occurrence on rape varieties, effect of fungicides, and preventive control measures. Landwirtsch Schweiz 6(10):589–596
    Wright P, Lewthwaite S, Triggs C, Broadhurst P (2003) Laboratory evaluation of sweetpotato (Ipomoea batatas) resistance to sclerotinia rot. N Z J Crop Hortic Sci 31(1):33–39CrossRef
    Wu H (1988) Effects of bacteria on germination and degradation of sclerotia of Sclerotinia Sclerotiorum (Lib.) de Bary. North Dakota State University, North Dakota
    Wu Y, Yuan J, Raza W, Shen Q, Huang Q (2014) Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J Microbiol Biotechn 24(10):1327–1336CrossRef
    Xie J, Jiang D (2014) New Insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68PubMed CrossRef
    Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87(1):241–249PubMed CrossRef
    Yang D, Wang B, Wang J, Chen Y, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51(1):61–65CrossRef
    Yexin Z, Huqiang Q, Fengjie N, Lili H, Xiaoning G, Zhensheng K, Qingmei H (2011) Investigation of Sclerotinia stem rot in Shaanxi Province. Plant Prot 2:025
    Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci 107(18):8387–8392PubMedCentral PubMed CrossRef
    Yu X, Li B, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D (2013) Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc Natl Acad Sci 110(4):1452–1457PubMedCentral PubMed CrossRef
    Zhang Y (2004) Biocontrol of Sclerotinia stem rot of canola by bacterial antagonists and study of biocontrol mechanisms involved University of Manitoba, Manitoba, Canada
    Zhang Y, Fernando W (2004a) Biological control of Sclerotinia sclerotiorum infection in canola by Bacillus sp. Phytopathology 93:94
    Zhang Y, Fernando W (2004b) Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can J Plant Pathol 26:430–431CrossRef
    Zhang JX, Xue AG (2010) Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 59(2):382–391CrossRef
    Zhang Y, Daayf F, Fernando WGD (2004) Induced resistance against Sclerotinia in canola mediated by bacterial biocontrol agents In: International Joint Workshop on PR-Proteins and Induced Resistance, Copenhagen, Denmark 8–9
    Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764PubMed
  • 作者单位:Mohd. Mostofa Kamal (1)
    Sandra Savocchia (1)
    Kurt D. Lindbeck (2)
    Gavin J. Ash (1)

    1. Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW DPI), School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
    2. New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
  • 刊物主题:Plant Pathology; Plant Sciences; Agriculture; Entomology; Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1448-6032
文摘
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen infecting over 500 host species including oilseed Brassicas. The fungus forms sclerotia which are the asexual resting structures that can survive in the soil for several years and infect host plants by producing ascospores or mycelium. Therefore, disease management is difficult due to the long term survivability of sclerotia. Biological control with antagonistic fungi, including Coniothyrium minitans and Trichoderma spp, has been reported, however, efficacy of these mycoparasites is not consistent in the field. In contrast, a number of bacterial species, such as Pseudomonas and Bacillus display potential antagonism against S. sclerotiorum. More recently, the sclerotia-inhabiting strain Bacillus cereus SC-1, demonstrated potential in reducing stem rot disease incidence of canola both in controlled and natural field conditions via antibiosis. Therefore, biocontrol agents based on bacteria could pave the way for sustainable management of S. sclerotiorum in oilseed cropping systems. Keywords Biology Biocontrol Sclerotinia Oilseed Brassica

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700