Critical points of invariant functions on closed orientable surfaces
详细信息    查看全文
  • 作者:G. Gromadzki ; J. Jezierski ; W. Marzantowicz
  • 关键词:Riemann surfaces ; Finite group action ; Equivariant Lusternik–Schnirelmann category ; Riemann–Hurwitz ramification formula ; Invariant function ; Critical orbits ; Primary 55M30 ; 55M35 ; Secondary 30F10
  • 刊名:Bolet篓陋n de la Sociedad Matem篓垄tica Mexicana
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:21
  • 期:1
  • 页码:71-88
  • 全文大小:281KB
  • 参考文献:1.Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, New York (1993)
    2.Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach. Lecture Notes in Mathematics, vol. 1439. Springer, Berlin (1990)
    3.Clapp, M., Puppe, D.: Critical point theory with symmetries. J. reine angew. Math. 418, 1-9 (1991)MATH MathSciNet
    4.Colman, H.: Equivariant LS-category for finite group actions. Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001). Contemp. Math. Am. Math. Soc. Provid. RI 316, 35-0 (2002)
    5.Edmonds, A.L.: Transformation groups and low-dimensional manifolds. Group actions on manifolds (Boulder, Colo., 1983). Contemp. Math. Am. Math. Soc. Provid. RI 36, 339-66 (1985)
    6.Farkas, H.M., Kra, I.: Riemann surfaces. In: Graduate Texts in Mathematics, vol. 71. Springer, New York (1992)
    7.Gromadzki, G., Marzantowicz, W.: Conformal actions with prescribed periods on Riemann surfaces. Fundam. Math. 213, 169-90 (2011)CrossRef MATH MathSciNet
    8.Hurwitz, A.: über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 402-42 (1893)
    9.Harvey, W.J.: Cyclic groups of automorphisms of a compact Riemann surface. Q. J. Math. Oxf. 17, 86-7 (1966)CrossRef MATH
    10.Macbeath, A.M.: Action of automorphisms of a compact Riemann surface on the first homology group. Bull. Lond. Math. Soc. 5, 103-08 (1973)CrossRef MATH MathSciNet
    11.Marzantowicz, W.: A \(G\) -Lusternik–Schnirelman category of space with an action of a compact Lie group. Topology 28, 403-12 (1989)CrossRef MATH MathSciNet
    12.Miranda, R.: Algebraic curves and Riemann surfaces. In: Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence (1995)
    13.Seifert, H., Threlfall, W.: Variationsrechnung im Grossen (Theorie von Marston Morse). Teubner, Leipzig and Berlin (1938)
    14.Sierakowski, M.: Sets of periods for automorphisms of compact Riemann surfaces. J. Pure Appl. Algebra 208, 561-74 (2007)CrossRef MATH MathSciNet
    15.Stawiska, M.: Riemann–Hurwitz formula and Morse theory, contemporary mathematics. In: Poggi-Corradini, P. (ed.) p-Harmonic Equation and Recent Advances in Analysis, vol. 370, pp. 209-11 (2005)
    16.Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik–Schnirelman category. Invent. Math. 6, 197-44 (1968)CrossRef MATH MathSciNet
    17.Wiman, A.: über die hyperelliptischen Kurven und diejenigen vom Geschlecht \(p=3\) , welche eindeutige Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Handlingar 21(1), 23 (1895)
  • 作者单位:G. Gromadzki (1)
    J. Jezierski (2)
    W. Marzantowicz (3)

    1. Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952?, Gdańsk, Poland
    2. Institute of Applied Mathematics, University of Agriculture, ul. Nowoursynowska 166, 02-787?, Warsaw, Poland
    3. Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, Umultowska 87, 61-614?, Poznań, Poland
  • 刊物类别:Mathematics, general;
  • 刊物主题:Mathematics, general;
  • 出版者:Springer International Publishing
  • ISSN:2296-4495
文摘
The relationship between critical points of equivariant functions and topological invariants of an equivariant action on closed manifold is an interesting problem. In this paper, we study this relationship for orientation-preserving actions of finite groups \(G\) on a closed orientable surfaces. We give an elementary, but detailed, description of the behaviour of the gradient field of an equivariant \(C^1\)-function, we present an elementary, differential, proof of the Riemann–Hurwitz formula and we construct invariant \(C^1\)-functions with the minimal number of critical orbits. These lead us to show that, with a few exceptions, the equivariant Lusternik–Schnirelmann category of a closed orientable topological surface equals the number of singular orbits of the action. Keywords Riemann surfaces Finite group action Equivariant Lusternik–Schnirelmann category Riemann–Hurwitz ramification formula Invariant function Critical orbits

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700