Universality Limits involving Orthogonal Polynomials on an Arc of the Unit Circle
详细信息    查看全文
  • 作者:Doron S. Lubinsky (1)
    Vy Nguyen (1)
  • 关键词:Orthogonal polynomials ; Subarc of unit circle ; Universality limits ; Primary 41A10 ; 42C05 ; 42C99 ; Secondary 30C15 ; 30E10
  • 刊名:Computational Methods and Function Theory
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 页码:91-106
  • 参考文献:1. Akhiezer, N.I.: On polynomials orthogonal on a circular arc, Dokl. Akad. Nauk SSSR, 130, 247鈥?50 (1960)[in Russian]; Soviet Math. Dokl., 1, 31鈥?4 (1960)
    2. Baik, J., Kriecherbauer, T., McLaughlin, T.-R., Miller, P.D.: Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles. Princeton Ann. Math. Stud. (2006)
    3. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Institute Lecture Notes, vol. 3. New York University Pres, New York (1999)
    4. Deift, P., Kriecherbauer, T., McLaughlin, K.T-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Maths 52, 1335鈥?425 (1999)
    5. Freud, G.: Orthogonal polynomials. Akademiai Kiado, Budapest (1971)
    6. Golinskii, L.: Akhiezer鈥檚 orthogonal polynomials and Bernstein-Szeg艖 method for a circular arc. J. Approx. Theory 95, 229鈥?63 (1998)
    7. Golinskii, L.: The Christoffel function for orthogonal polynomials on a circular arc. J. Approx. Theory 101, 165鈥?74 (1999) CrossRef
    8. Kuijlaars, A.B., Vanlessen, M.: Universality for Eigenvalue correlations from the modified Jacobi unitary ensemble. Int. Maths Res. Notices 30, 1575鈥?600 (2002) CrossRef
    9. Levin, E., Lubinsky, D.S.: Universality limits involving orthogonal polynomials on the unit circle. Comput. Methods Funct. Theory 7, 543鈥?61 (2007)
    10. Levin, E., Lubinsky, D.S.: Universality limits in the bulk for varying measures. Adv. Math. 219, 743鈥?79 (2008)
    11. Levin, E., Lubinsky, D.S.: Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials. J. Approx. Theory 150, 69鈥?5 (2008)
    12. Lubinsky, D.S.: A new approach to universality limits at the edge of the spectrum. Contempor. Math. 458, 281鈥?90 (2008) CrossRef
    13. Lubinsky, D.S.: A new approach to universality limits involving orthogonal polynomials. Ann. Math. 170, 915鈥?39 (2009) CrossRef
    14. Lubinsky, D.S.: Bulk universality holds in measure for compactly supported measures. J. Anal. Math. 116, 219鈥?53 (2012) CrossRef
    15. Martinez-Finkelshtein, A., McLaughlin, K.T.-R., Saff, E.B.: Szeg枚 orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319鈥?63 (2006) CrossRef
    16. Mastroianni, G., Totik, V.: Uniform spacing of zeros of orthogonal polynomials. Constr. Approx. 32, 181鈥?92 (2010) CrossRef
    17. Ransford, T.: Potential theory in the complex plane. Cambridge University Press, Cambridge (1995) CrossRef
    18. Simon, B.: Orthogonal polynomials on the unit circle, Parts 1 and 2. American Mathematical Society, Providence (2005)
    19. Simon, B.: Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures. Electron. Trans. Numer. Anal. 25, 328鈥?68 (2006)
    20. Simon, B.: Two extensions of Lubinsky鈥檚 universality theorem. J. Anal. Math. 105, 345鈥?62 (2008)
    21. Stahl, H., Totik, V.: General orthogonal polynomials. Cambridge University Press, Cambridge (1992) CrossRef
    22. Totik, V.: Asymptotics for Christoffel functions for general measures on the real line. J. Anal. Math. 81, 283鈥?03 (2000) CrossRef
    23. Totik, V.: Universality and fine zero spacing on general sets. Arkiv f枚r Matematik 47, 361鈥?91 (2009) CrossRef
    24. Totik, V.: Christoffel functions on curves and domains. Trans. Am. Math. Soc. 362, 2053鈥?087 (2010) CrossRef
  • 作者单位:Doron S. Lubinsky (1)
    Vy Nguyen (1)

    1. School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 聽30332-0160, USA
  • ISSN:2195-3724
文摘
We establish universality limits for measures on a subarc of the unit circle. Assume that $\mu $ is a regular measure on such an arc, in the sense of Stahl, Totik, and Ullmann, and is absolutely continuous in an open arc containing some point $z_{0}={\text{ e }}^{i\theta _{0}}$ . Assume, moreover, that $\mu ^{\prime }$ is positive and continuous at $z_{0}$ . Then universality for $\mu $ holds at $z_{0}$ , in the sense that the reproducing kernel $K_{n}\left( z,t\right) $ for $\mu $ satisfies $$\begin{aligned} \lim _{n\rightarrow \infty }\frac{K_{n}\left( z_{0}\exp \left( \frac{2\pi is}{ n}\right) ,z_{0}\exp \left( \frac{2\pi i\bar{t}}{n}\right) \right) }{ K_{n}\left( z_{0},z_{0}\right) }={\text{ e }}^{i\pi \left( s-t\right) }S\left( \left( s-t\right) T\left( \theta _{0}\right) \right) , \end{aligned}$$ uniformly for $s,t$ in compact subsets of the plane, where $S\left( z\right) =\frac{\sin \pi z}{\pi z}$ is the sinc kernel, and $T/2\pi $ is the equilibrium density for the arc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700