On the Behavior of Gegenbauer Polynomials in the Complex Plane
详细信息    查看全文
  • 作者:Geno Nikolov (1)
    Alexander Alexandrov (1)
  • 关键词:Primary 30C10 ; 30A10 ; Secondary 33C45 ; 41A17 ; Gegenbauer polynomials ; Jensen inequalities ; Markov inequality ; Duffin and Schaeffer type inequalities
  • 刊名:Results in Mathematics
  • 出版年:2012
  • 出版时间:4 - December 2012
  • 年:2012
  • 卷:62
  • 期:3
  • 页码:415-428
  • 全文大小:236KB
  • 参考文献:1. Alexandrov, A., Nikolov, G.: An inequality of Duffin-Schaeffer type for Hermite polynomials. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010, pp. 8-9, Prof. Marin Drinov Academic Publishing House, Sofia (2011)
    2. Bojanov B., Nikolov G.: Duffin and Schaeffer-type inequality for ultraspherical polynomials. J. Approx. Theory 84, 129-38 (1996) CrossRef
    3. Craven G., Varga R.S.: Necessary and sufficient conditions and the Riemann hypothesis. Adv. Appl. Math. 11, 328-52 (1990) CrossRef
    4. Duffin R.J., Schaeffer A.C.: A refinement of an inequality of brothers Markoff. Trans. Am. Math. Soc. 50, 517-28 (1941) CrossRef
    5. Jensen J.L.W.V.: Receherches sur la theorie des equations. Acta Math. 36, 181-95 (1913) CrossRef
    6. Markov, A.A.: On a question of D. I. Mendeleev. Zap. Petersburg Akad. Nauk 62, 1-4 (1890) (in Russian)
    7. Markov, V.A.: On functions least deviated from zero in a given interval 1892, St. Petersburg (in Russian); German translation: über Polynome, die in einem gegeben Intervalle m?glichst wenig fon Null abweichen Math. Ann. 77, 213-58 (1916)
    8. Milev L., Nikolov G.: On the inequality of I. Schur. J. Math. Anal. Appl. 16, 421-37 (1997) CrossRef
    9. Nikolov G.: On certain Duffin and Schaeffer type inequalities. J. Approx. Theory 93, 157-76 (1998) CrossRef
    10. Nikolov G.: An inequality for polynomials with elliptic majorant. J. Inequal. Appl. 4, 315-25 (1999)
    11. Nikolov G.: Inequalities of Duffin-Schaeffer type. SIAM J. Math. Anal. 33, 686-98 (2001) CrossRef
    12. Nikolov G.: Inequalities of Duffin-Schaeffer type, II. East J. Approx. 11, 147-68 (2005)
    13. Nikolov G.: An extension of an inequality of Duffin and Schaeffer. Constr. Approx. 21, 181-91 (2005) CrossRef
    14. Nikolov G.: An extension of an inequality of I. Schur. Math. Nachr. 278, 1190-208 (2005) CrossRef
    15. Patrick M.L.: Some inequalities concerning Jacobi polynomials. SIAM J. Math. Anal. 2, 213-20 (1971) CrossRef
    16. Patrick M.L.: Extension of inequalities of the Laguerre and Turán type. Pacific J. Math. 44, 675-82 (1973)
    17. Pólya G., Schur I.: über zwei Arten von Factorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89-13 (1914)
    18. Rahman Q.I., Schmeisser G.: Markov–Duffin–Schaeffer inequality for polynomials with a circular majorant. Trans. Am. Math. Soc. 310, 693-02 (1988) CrossRef
    19. Rahman Q.I., Watt A.Q.: Polynomials with a parabolic majorant and the Duffin-Schaeffer inequality. J. Approx. Theory 69, 338-54 (1992) CrossRef
    20. Shadrin A.Yu.: Interpolation with Lagrange polynomials: a simple proof of Markov inequality and some of its generalizations. Approx. Theory Appl. (N.S.) 8, 51-1 (1992)
    21. Szeg?, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Publ. vol. 23. American Mathematical Society, Providence (1975)
  • 作者单位:Geno Nikolov (1)
    Alexander Alexandrov (1)

    1. Department of Mathematics and Informatics, University of Sofia, 5 James Bourchier Blvd., 1164, Sofia, Bulgaria
  • ISSN:1420-9012
文摘
It is well-known that the squared modulus of every function f from the Laguerre–Polya class ${\mathcal{L}-\mathcal{P}}$ of entire functions obeys a MacLaurin series representation $$|f(x+i y)|^2=\sum_{k=0}^{\infty} L_k(f;x)\,y^{2k}, \quad x,y\in\mathbb{R}$$ , which reduces to a finite sum when f is a polynomial having only real zeros. The coefficients {L k } are representable as non-linear differential operators acting on f, and by a classical result of Jensen L k (f;x)??0 for ${f\in \mathcal{L}-\mathcal{P}}$ and ${x\in \mathbb{R}}$ . Here, we prove a conjecture formulated by the first-named author in 2005, which states that for ${f=P_n^{(\lambda)} }$ , the n-th Gegenbauer polynomial, the functions ${\{L_k(f;x)\}_{k=1}^{n}}$ are monotone decreasing on the negative semi-axis and monotone increasing on the positive semi-axis. This result pertains to certain polynomial inequalities in the spirit of the celebrated refinement of Markov’s inequality, found by R. J. Duffin and A. C. Schaeffer in 1941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700