Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part II—Model Application to Fe-0.82WtPctC Alloy
详细信息    查看全文
  • 作者:Weiling Wang ; Sen Luo ; Miaoyong Zhu
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:47
  • 期:3
  • 页码:1355-1366
  • 全文大小:4,129 KB
  • 参考文献:1.R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, pp. 49-74.CrossRef
    2.J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.CrossRef
    3.P. Bouissou and P. Pelcé: Phys. Rev. E, 1989, vol. 40, pp. 6673-6680.CrossRef
    4.Q. Li and C. Beckermann: J. Cryst. Growth, 2002, vol. 236, pp. 482-498.CrossRef
    5.M. Zhu, S. Pan, D. Sun, and H. Zhao: ISIJ Int., 2010, vol. 50, pp. 1851-1858.CrossRef
    6.K. Reuther and M. Rettenmayr: Comput. Mater. Sci., 2014, vol. 95, pp. 213-220.CrossRef
    7.T. Takaki: ISIJ Int., 2014, vol. 54, pp. 437-444.CrossRef
    8.J.Z. Zhao, L. Li, and X.F. Zhang: Acta. Metall. Sin., 2014, vol. 50, pp. 641-651.
    9.H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7, pp. 811-820.CrossRef
    10.A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel: Acta Mater., 2013, vol. 61, pp. 1303-1315.CrossRef
    11.H. Yasuda, Y. Yamamoto, N. Nakatsuka, M. Yoshiya, T. Nagira, A. Sugiyama, I. Ohnaka, K. Uesugi, and K. Umetani: Int. J. Cast Met. Res., 2009, vol. 22, pp. 15-21.CrossRef
    12.H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-408.CrossRef
    13.S. Pan and M. Zhu: Acta Mater., 2010, vol. 58, pp. 340-352.CrossRef
    14.D.P. Zhao, T. Jing, and B.C. Liu: Acta Phys. Sin., 2003, vol. 52, pp. 1737-1742.
    15.R. Chen, Q.Y. Xu, Q.F. Wu, H.T. Guo, and B.C. Liu: Acta. Metall. Sin., 2015, vol. 51, pp. 733-744.
    16.R. Chen, Q.Y. Xu, and B.C. Liu: Comput. Mater. Sci., 2015, vol. 105, pp. 90-100.CrossRef
    17.Y.F. Shi, Q.Y. Xu, and B.C. Liu: Acta Phys. Sin., 2011, vol. 60, pp. 126101.
    18.Z.J. Liang, Q.Y. Xu, J.R. Li, H.L. Yuan, S.H. Liu, and B.C. Liu: Acta. Metall. Sin., 2004, vol. 40, pp. 439-444.
    19.H.X. Jiang and J.Z. Zhao: Acta. Metall. Sin., 2011, vol. 47, pp. 1099-1104.
    20.M. Eshraghi, S.D. Felicelli, and B. Jelinek: J. Cryst. Growth, 2012, vol. 354, pp. 129-134.CrossRef
    21.H.K. Lin, C.C. Chen, and C.W. Lan: J. Cryst. Growth, 2011, vol. 318, pp. 51-54.CrossRef
    22.P. Zhao, J.C. Heinrich, and D.R. Poirier: Int. J. Numer. Meth. Eng., 2007, vol. 71, pp. 25-46.CrossRef
    23.L. Wei, X. Lin, M. Wang, and W.D. Huang: Phys. B, 2012, vol. 407, pp. 2471-2475.CrossRef
    24.T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Nat. Mater., 2006, vol. 5, pp. 660-664.CrossRef
    25.J.H. Jeong, N. Goldenfeld, and J.A. Dantzig: Phys. Rev. E, 2001, vol. 64, no. 4, pp. 041602.CrossRef
    26.N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-696.CrossRef
    27.Y. Lu, C. Beckermann, and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-334.CrossRef
    28.C.C. Chen, Y.L. Tsai, and C.W. Lan: Int. J. Heat Mass Trans., 2009, vol. 52, pp. 1158-1166.CrossRef
    29.L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, pp. 055008.CrossRef
    30.X.F. Zhang and J.Z. Zhao: Acta. Metall. Sin., 2012, vol. 48, pp. 615-620.CrossRef
    31.C.C. Chen and C.W. Lan: J. Cryst. Growth, 2010, vol. 312, pp. 1437-1442.CrossRef
    32.M.W. Wu and S.M. Xiong: Acta Metall. Sin., 2012, vol. 25, pp. 169-178.
    33.R. Chen, Q.Y. Xu, and B.C. Liu: Acta Phys. Sin., 2014, vol. 63, pp. 188102.
    34.W. Wang, P.D. Lee, and M. Mclean: Acta Mater., 2003, vol. 51, pp. 2971-2987.CrossRef
    35.X.F. Zhang, J.Z. Zhao, H.X. Jiang, and M.F. Zhu: Acta Mater., 2012, vol. 60, pp. 2249-2257.CrossRef
    36.X.F. Zhang and J.Z. Zhao: J. Cryst. Growth, 2014, vol. 391, pp. 52-58.CrossRef
    37.Y. Zhao, R.S. Qin, and D.F. Chen: J. Cryst. Growth, 2013, vol. 377, pp. 72-77.CrossRef
    38.W.L. Wang, S. Luo, and M.Y. Zhu: Metall. Trans. A., 2015. DOI:10.​1007/​s11661-015-3304-7 .
    39.X.F. Zhang and J.Z. Zhao: Spec. Cast. Nonferrous Alloys, 2013, vol. 33, pp. 323-327.
    40.L. Nastac: Metall. Res. Technol., 2014, vol. 111, pp. 311-319.CrossRef
    41.W.L. Wang, S. Luo, and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-148.CrossRef
    42.W.L. Wang, S. Luo, and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46, pp. 396-406.CrossRef
  • 作者单位:Weiling Wang (1)
    Sen Luo (1)
    Miaoyong Zhu (1)

    1. School of Metallurgy, Northeastern University, Shenyang, 110819, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
In the second part (Part II) of the present simulation work, the three-dimensional (3D) dendritic growth of Fe-0.82wtpctC alloy is investigated with the 3D CA-FVM cellular automaton-finite volume method model developed in Part I. The influences of the melt undercooling, the interfacial anisotropy, and the forced flow on the equiaxed dendritic growth, especially the formation of secondary arms, are discussed. The comparisons of equiaxed dendritic growth in 3D and two-dimensional (2D) are also carried out. Finally, the columnar dendritic growth under different cooling conditions is investigated including the morphology and the secondary dendrite arm spacing (SDAS). The results show that the high undercooling can promote the formation of secondary arms as the anisotropy parameter is 0.04. With the increase of the anisotropy parameter, the secondary arms first reduce and then well develop again; meanwhile the tertiary arms are gradually developed. However, the secondary arms vanish at the undercooling of 5 K as the anisotropy parameter increases to 0.04. With the introduction of the forced flow with the inlet velocity of 0.001 m/s along the x axis, the secondary arms at the left (upstream) arm become more developed. However, they become slightly less developed with the forced flow intensifying. Secondary arms at the left side (upstream) of the perpendicular arms and in the y-z symmetrical plane become more and more developed as the inlet velocity increases. The competition of the secondary arms at the right side (downstream) of the perpendicular arms and at the right (downstream) arm becomes significant as the undercooling increases from 10 to 15 K. The solute-enriched envelope in 2D is much thicker than in the 3D case, so that the dendritic growth in 2D is influenced more by the melt flow and the undercooling; moreover, the secondary arms in 2D are hard to form even at the undercooling of 15 K and with the forced convection in the present article. Meanwhile, the variation tendency of the movement of columnar dendritic tip and the decrement of the average SDAS with every 0.025-MW/m2 increment of the heat flux are quite different. Manuscript submitted August 24, 2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700