Study on the eutectic and post-eutectic reactions in LM13 aluminum alloy using cooling curve thermal analysis technique
详细信息    查看全文
  • 作者:V. A. Hosseini ; S. G. Shabestari
  • 关键词:Cooling rate ; Solid fraction ; Thermal analysis ; Intermetallic compounds ; Mechanical property
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:124
  • 期:2
  • 页码:611-617
  • 全文大小:2,136 KB
  • 参考文献:1.Yamagata H. The science and technology of materials in automotive engines. Amsterdam: Elsevier; 2005.CrossRef
    2.Maleki A, Niroumand B, Shafyei A. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Mater Sci Eng, A. 2006;428(1):135–40.CrossRef
    3.Ashiri R, Niroumand B, Karimzadeh F, Hamani M, Pouranvari M. Effect of casting process on microstructure and tribological behavior of LM13 alloy. J Alloys Compd. 2009;475(1):321–7.CrossRef
    4.Krupiński M, Labisz K, Dobrzański L, Rdzawski Z. Derivative thermo-analysis application to assess the cooling rate influence on the microstructure of Al–Si alloy cast. J Achiev Mater Manuf Eng. 2010;38(2):115–22.
    5.Dobrzański L, Maniara R, Sokołowski J, Kasprzak W. Effect of cooling rate on the solidification behavior of AC AlSi 7 Cu 2 alloy. J Mater Process Technol. 2007;191(1):317–20.CrossRef
    6.Krupiñska B, Dobrzañski L, Rdzawski Z, Labisz K. Cooling rate influence on microstructure of the Zn–Al cast alloy. Arch Mater Sci. 2010;14:14.
    7.Gowri S, Samuel F. Effect of Mg on the solidification behavior of two Al–Si–Cu–Fe–Mg (380) diecasting alloys. Trans Am Foundrym Soc 1993;101:611.
    8.Dutta B, Rettenmayr M. Effect of cooling rate on the solidification behaviour of Al–Fe–Si alloys. Mater Sci Eng A. 2000;283(1):218–24.CrossRef
    9.Apelian D, Sigworth GK, Whaler K. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans. 1984;92(2):297–307.
    10.Gibbs JW, Mendez PF. Solid fraction measurement using equation-based cooling curve analysis. Scr Mater. 2008;58(8):699–702.CrossRef
    11.Kou S. Welding metallurgy. Cambridge: Cambridge University Press; 1987.
    12.Bakhtiyarov SI, Overfelt RA, Teodorescu SG. Fraction solid measurements on solidifying melt. J Fluids Eng. 2004;126(2):193–7.CrossRef
    13.Kiuchi M, Sugiyama S. A new method to detect solid fractions of mushy/semi-solid metals and alloys. CIRP Ann Manuf Technol. 1994;43(1):271–4.CrossRef
    14.Malekan M, Shabestari S. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103(2):453–8.CrossRef
    15.Emadi D, Whiting L, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81(1):235–42.CrossRef
    16.Shabestari S, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloys Compd. 2010;492(1):134–42.CrossRef
    17.Fras E, Kapturkiewicz W, Burbielko A, Lopez H. A new concept in thermal analysis of castings. Trans Am Foundrym Soc. 1993;101:505–11.
    18.Rikhtegar F, Shabestari S. Investigation on solidification conditions in functionally Si-gradient Al alloys using simulation and cooling curve analysis methods. J Therm Anal Calorim. 2014;117(2):721–9.CrossRef
    19.Shabestari SG, Gholizadeh R. Assessment of intermetallic compound formation during solidification of Al–Si piston alloys through thermal analysis technique. Mater Sci Technol. 2012;28(2):156–64.CrossRef
    20.Backerud L, Chai G, Tamminen J. Solidification characteristics of aluminium alloys. Oslo: Skanaluminium; 1990.
    21.Sen O, editor. Effect of modulus on the solidification characteristics and microstructure of 380 alloy. Transactions of the American Foundry Society and the One Hundred Seventh Annual Castings Congress; 2003.
    22.Gowri S. Comparison of thermal analysis parameters of 356 and 359 Alloys (94-29). Trans Am Foundrym Soc. 1994;102:503–8.
    23.Mortensen A. On the rate of dendrite arm coarsening. MTA. 1991;22(2):569–74. doi:10.​1007/​BF02656824 .CrossRef
    24.Nafisi S, Ghomashchi R, Vali H. Eutectic nucleation in hypoeutectic Al–Si alloys. Mater Charact. 2008;59(10):1466–73.CrossRef
    25.Eskin D, Du Q, Ruvalcaba D, Katgerman L. Experimental study of structure formation in binary Al–Cu alloys at different cooling rates. Mater Sci Eng A. 2005;405(1):1–10.CrossRef
  • 作者单位:V. A. Hosseini (1) (2)
    S. G. Shabestari (3)

    1. Department of Engineering Science, University West, 461 86, Trollhättan, Sweden
    2. Innovatum AB, 461 29, Trollhättan, Sweden
    3. Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Effect of non-equilibrium solidification conditions on the eutectic and post-eutectic reactions temperature and percentage of the phases were investigated using computer-aided cooling curve thermal analysis. In addition, hardness, secondary dendrite arm spacing, and maximum pore size were studied at different cooling conditions. Cooling curves were determined by setting thermocouples in the center of the molds. Solid fractions were calculated by Newtonian baseline technique. Results showed that increasing the cooling rate shifted the temperature of post-eutectic reaction upward, except final reaction. Higher cooling rate increased eutectic percentage about 4 %, but reduced total percentage of post-eutectic phases. Additionally, increasing the cooling rate shortened the maximum porosity diameter and secondary dendrite arm spacing and increased the hardness of the alloy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700