Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting
详细信息    查看全文
  • 作者:Wenming Jiang ; Xu Chen ; Benjing Wang…
  • 关键词:A356 aluminum alloy ; Vibration frequency ; Microstructure ; Mechanical properties ; Fracture behavior ; Expendable pattern shell casting
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:83
  • 期:1-4
  • 页码:167-175
  • 全文大小:1,785 KB
  • 参考文献:1.Jiang WM, Fan ZT, Liu DJ, Wu HB (2013) Influence of gas flowrate on filling ability and internal quality of A356 aluminum alloy castings fabricated using the expendable pattern shell casting with vacuum and low pressure. Int J Adv Manuf Technol 67:2459–2468. doi:10.​1007/​s00170-012-4663-5 CrossRef
    2.Jiang WM, Fan ZT, Liu DJ, Liao DF, Dong XP, Zong XM (2013) Correlation of microstructure with mechanical properties and fracture behavior of A356-T6 aluminum alloy fabricated by expendable pattern shell casting with vacuum and low-pressure, gravity casting and lost foam casting. Mater Sci Eng A 560:396–403. doi:10.​1016/​j.​msea.​2012.​09.​084 CrossRef
    3.Wen JL, Yang YK, Jeng MC (2009) Optimization of die casting conditions for wear properties of alloy AZ91D components using the Taguchi method and design of experiments analysis. Int J Adv Manuf Technol 41:430–439. doi:10.​1007/​s00170-008-1499-0 CrossRef
    4.Wang YC, Li DY, Peng YH (2007) Numerical simulation of low pressure die casting of magnesium wheel. Int J Adv Manuf Technol 32:257–264. doi:10.​1007/​s00170-005-0325-1 CrossRef
    5.Chung IG, Bolouri A, Kang CG (2012) A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring. Int J Adv Manuf Technol 58:237–245. doi:10.​1007/​s00170-011-3376-5 CrossRef
    6.Ashton MC, Sharman SG, Brookes AJ (1984) Replicast CS (ceramic shell) process. Mater Des 5:66–67CrossRef
    7.Liao DF, Fan ZT, Jiang WM, Shen EQ, Liu DJ (2011) Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern. J Mater Process Technol 211:1465–1470. doi:10.​1016/​j.​jmatprotec.​2011.​03.​021 CrossRef
    8.Jiang WM, Fan ZT, Liao DF, Dong XP, Zhao Z (2010) A new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys. Int J Adv Manuf Technol 51:25–34. doi:10.​1007/​s00170-010-2596-4 CrossRef
    9.Candan S, Unal M, Turkmen M, Koc E, Turen Y, Candan E (2009) Improvement of mechanical and corrosion properties of magnesium alloy by lead addition. Mater Sci Eng A 501:115–118. doi:10.​1016/​j.​msea.​2008.​09.​068 CrossRef
    10.Chandrashekar T, Muralidhara MK, Kashyap KT, Raghothama Rao P (2009) Effect of growth restricting factor on grain refinement of aluminum alloys. Int J Adv Manuf Technol 40:234–241. doi:10.​1007/​s00170-007-1336-x CrossRef
    11.Kaur P, Dwivedi DK, Pathak PM (2012) Effects of electromagnetic stirring and rare earth compounds on the microstructure and mechanical properties of hypereutectic Al–Si alloys. Int J Adv Manuf Technol 63:415–420. doi:10.​1007/​s00170-012-3921-x CrossRef
    12.Li MJ, Tamura T, Omura N, Miwa K (2009) Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique. J Alloys Compd 487:187–193. doi:10.​1016/​j.​jallcom.​2009.​08.​045 CrossRef
    13.Aghayani MK, Niroumand B (2011) Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy. J Alloys Compd 509:114–122. doi:10.​1016/​j.​jallcom.​2010.​08.​139 CrossRef
    14.Chirita G, Stefanescu I, Soares D, Silva FS (2009) Influence of vibration on the solidification behaviour and tensile properties of an Al-18 wt%Si alloy. Mater Des 30:1575–1580. doi:10.​1016/​j.​matdes.​2008.​07.​045 CrossRef
    15.Taghavi F, Saghafian H, Kharrazi YHK (2009) Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Mater Des 30:1604–1611. doi:10.​1016/​j.​matdes.​2008.​07.​032 CrossRef
    16.Abdul-Karem W, Green N, Al-Raheem KF, Hasan AHA (2013) Effect of vibration after filling on mechanical reliability in thin wall investment casting with fillability filling regime-part 1. Int J Adv Manuf Technol 67:2075–2082. doi:10.​1007/​s00170-012-4632-z CrossRef
    17.Guo HM, Zhang AS, Yang XJ, Yan MM, Ding Y (2014) Microstructure formation and mechanical properties of AZ31 magnesium alloy solidified with a novel mechanical vibration technique. Metall Mater Trans A 45:438–446. doi:10.​1007/​s11661-013-1979-1 CrossRef
    18.Jiang WM, Fan ZT, Dai YC, Li C (2014) Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater Sci Eng A 597:237–244. doi:10.​1016/​j.​msea.​2014.​01.​009 CrossRef
    19.Lu SL, Wu SS, Wan L, An P (2013) Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting. Metall Mater Trans A 44:2735–2745. doi:10.​1007/​s11661-013-1637-7 CrossRef
    20.Campbell J (1981) Effects of vibration during solidification. Int Met Rev 2:71–108
    21.Doherty RD (2003) Comments on mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Scr Mater 49:1219–1222. doi:10.​1016/​j.​scriptamat.​2003.​08.​019 CrossRef
    22.Taghavi F, Saghafian H, Kharrazi YHK (2009) Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy. Mater Des 30:115–121. doi:10.​1016/​j.​matdes.​2008.​04.​034 CrossRef
    23.Abu-Dheir N, Khraisheh M, Saito K, Male A (2005) Silicon morphology modification in the eutectic Al–Si alloy using mechanical mold vibration. Mater Sci Eng A 393:109–117. doi:10.​1016/​j.​msea.​2004.​09.​038 CrossRef
    24.Abdul-Karem W, Green N, Al-Raheem KF (2012) Vibration-assisted filling capability in thin wall investment casting. Int J Adv Manuf Technol 61:873–887. doi:10.​1007/​s00170-011-3774-8 CrossRef
    25.Wang QG (2003) Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A 34:2887–2899CrossRef
    26.Gokhale AM, Dighe MD, Horstemeyer M (1998) Effect of temperature on silicon particle damage in A356 alloy. Metall Mater Trans A 29:905–907CrossRef
    27.Boostani AF, Tahamtan S (2009) Fracture behavior of thixoformed A356 alloy produced by SIMA process. J Alloys Compd 481:220–227. doi:10.​1016/​j.​jallcom.​2009.​03.​050 CrossRef
    28.Bai YF, Zhao HD (2010) Tensile properties and fracture behavior of partial squeeze added slow shot die-cast A356 aluminum alloy. Mater Des 31:4237–4243. doi:10.​1016/​j.​matdes.​2010.​04.​005 CrossRef
    29.Wang QG, Caceres CH, Griffiths JR (2003) Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall Mater Trans A 34:2901–2912CrossRef
  • 作者单位:Wenming Jiang (1) (2)
    Xu Chen (2)
    Benjing Wang (2)
    Zitian Fan (1)
    Hebao Wu (2)

    1. State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
    2. School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
A simple, economic, and effective mechanical vibration method was introduced into the solidification process of A356 aluminum alloy during the expendable pattern shell casting process, and the effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of the A356 alloy were investigated. Obtained results showed that the sizes and morphologies of α-Al primary phase and eutectic silicon particles were significantly improved by the mechanical vibration, and the mechanical properties and density of the A356 alloy greatly increased. With increasing vibration frequency, the grain size and secondary dendrite arm spacing (SDAS) continuously decreased, and the shape factor increased, and the mechanical properties and density of the A356 alloy gradually increased. With a vibration frequency of 100 Hz, the grain size and SDAS decreased by 32 and 19 %, respectively, and the shape factor increased by 262 %, and the average length, width, and aspect ratio of the silicon particles decreased by 45, 6, and 42 %, respectively, compared to that of the sample without vibration. Meanwhile, the tensile strength, yield strength, elongation, and hardness of the A356 alloy sample were, respectively, 35, 42, 57, and 28 % higher than those of the sample without vibration. In addition, the mechanical vibration changed the fractograph of the A356 alloy from a clear brittle fracture nature of the alloy without vibration to an obvious dimple fracture nature, and with the increase of vibration frequency, the dimples were very deep and well distributed with a high density.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700