Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation
详细信息    查看全文
  • 作者:M. Umar Qureshi ; Gareth D. A. Vaughan…
  • 关键词:Pulmonary circulation ; Pulmonary hypertension ; Resistance arteries ; Structured tree ; Multiscale mathematical model
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:13
  • 期:5
  • 页码:1137-1154
  • 全文大小:1,314 KB
  • 参考文献:1. Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ (2007) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794-805 CrossRef
    2. Alastruey J, (2011) Numerical assessment of time-domain methods for estimation of local arterial pulse wave speed. J Biomech 44:885-91
    3. Attinger EO (1963) Pressure transmission in pulmonary arteries related to frequency and geometry. Circ Res 12(6):623-41 CrossRef
    4. Azer K, Peskin CS (2007) A one-dimensional model of blood flow in arteries with friction and convection based on the womersley velocity profile. Cardiovasc Eng 7(2):51-3 CrossRef
    5. Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87-31
    6. Barst RJ, McGoon M, Torbicki A, Sitbon O, Krowka MJ, Olschewski H, Gaine S (2004) Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 43:40S-7S CrossRef
    7. Bovendeerd PH, Borsje P, Arts T, van de Vosse FN (2006) Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann Biomed Eng 34:1833-845 CrossRef
    8. Burton AC (1972) Physiology and biophysics of the circulation. Year Book Medical Publishers, Chicago, IL, pp 86-4
    9. Castelain V, Herve P, Lecarpentier Y, Duroux P, Simonneau G, Chemla D (2001) Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol 7:1085-092 CrossRef
    10. Clipp RB, Steele BN (2009) Impedance boundary conditions for the pulmonary vasculature including the effects of geometry, compliance, and respiration. IEEE Trans Biomed Eng 56:862-70 CrossRef
    11. Clipp RB, Steele BN (2012) An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Math Biosci Eng 9:61-4 CrossRef
    12. Cousins W, Gremaud PA (2012) Boundary conditions for hemodynamics: The structured tree revisited. J Comp Phys 231:6086-096
    13. Cousins W, Gremaud PA, Tartakovsky DM (2013) A new physiological boundary condition for hemodynamics. SIAM J Appl Math 3(73):1203-233 CrossRef
    14. Dartevelle P, Fadell E, Mussot S, Chapelier A, Hervel P, de Perrot M, Cerrinal J, Laduriel FL, Lehouerou D, Humbert M, Sitbon O, Simonneau G (2004) Chronic thromboembolic pulmonary hypertension. Eur Respir J 23:637-48 CrossRef
    15. Evans RL, Pelley JW, Quenemoen L (1960) Some simple geometric and mechanical characteristics of mammalian blood vessels. Am J Physiol 199:1150-152
    16. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes T, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685-706 CrossRef
    17. Fonseca GH, Souza R, Salemi VM, Jardim CV, Gualandro SF (2012) Pulmonary hypertension diagnosed by right heart catheterization in sickle cell disease. Eur Respir J 39(1):112- CrossRef
    18. Formaggia L, Lamponi D, Tuveri M, Veneziani A (2006) Numerical modelling of 1D networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Biomed Eng 9:273-88 CrossRef
    19. Fullana J, Zaleski S (2009) A branched one-dimensional model of vessel networks. J Fluid Mech 621:183-04 CrossRef
    20. Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, New York
    21. Gao Y, Raj UJ (2005) Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 288:L213–L226 CrossRef
    22. Greenfield JC, Douglas MG (1963) Relation between pressure and diameter in main pulmonary artery of man. J Appl Physiol 18:557-59
    23. Hachulla E, Gressin V, Guillevin L et al (2005) Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum 52:3792-800 CrossRef
    24. Hall JE (2011) Guyton and Hall textbook of medical physiology, 12th edn. Saunders Elsevier, Philadelphia
    25. Herve P, Musset D, Simonneau G, Wagner W Jr, Duroux P (1989) Almitrine decreases the distensibility of the large pulmonary arteries in man. Chest 96:572-77 CrossRef
    26. Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV (2001) Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281:H895-02
    27. Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81:2123-133
    28. Huo Y, Kassab GS (2007) A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol 292:H2623–H2633 CrossRef
    29. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation. Lessons learned by use of magnetic resonance imaging. Circulation 107:2004-010 CrossRef
    30. Kawahira Y, Kishimoto H, Kawata H, Ikawa S, Ueda H, Nakajima T, Kayatani F, Inamura N, Nakada T (1997) Diameters of the pulmonary arteries and veins as an indicator of bilateral and unilateral pulmonary blood flow in patients with congenital heart disease. J Card Surg 12:253-60 CrossRef
    31. Kim YH, Marom EM, Herndon JE, McAdams HP (2005) Pulmonary vein diameter, cross-sectional area, and shape: CT analysis. Radiology 235:43-0 CrossRef
    32. Krenz GS, Dawson CA (2003) Flow and pressure distributions in vascular networks consisting of distensible vessels. Am J Physiol 284:H2192–H2203
    33. Lankhaar JW, Westerhof N, Faes TJC, Marques KMJ, Marcus JT, Post-mus PE, Vonk-Noordegraaf A (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 291:H1731–H1737 CrossRef
    34. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA (2001) Microcirculation in hypertension: a new target for treatment? Circulation 104(6):735-40 CrossRef
    35. Li CW, Cheng HD (1993) A nonlinear fluid model for pulmonary blood circulation. J Biomech 26:653-64 CrossRef
    36. Machado RF, Gladwin MT (2010) Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective. Chest 137:30S-8S CrossRef
    37. Matthys KS, Alastruey J, Peiro J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin SJ (2007) Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech 40:3476-486 CrossRef
    38. Milnor WR (1989) Hemodynamics, 2nd edn. Williams and Wilkins, Baltimore
    39. Mukerjee D, George D, St Coleiro B et al (2003) Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis 62:1088-093 CrossRef
    40. Müller LO, Toro EF (2014) A global multi-scale mathematical model for the human circulation with emphasis on the venous system. Int J Num Methods Bio Med Eng. doi:10.1002/cnm.2622
    41. Nichols WW, O’Rourke MF (1998) MacDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 4th edn. Edward Arnold, Philadelphia
    42. Olufsen MS (1998) Modeling the arterial system with reference to an anesthesia simulator. PhD Thesis, Department of Mathematics, Roskilde University, Denmark
    43. Olufsen MS (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol Heart Circ Physiol 276:H257–H268
    44. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281-299 CrossRef
    45. Olufsen MS, Hill NA, Vaughan GDA, Sainsbury C, Johnson M (2012) Rarefaction and blood pressure in systemic and pulmonary arteries. J Fluid Mech 705:280-05 CrossRef
    46. Patel DJ, Schilder DP, Mallos AJ (1960) Mechanical properties and dimensions of major pulmonary arteries. J Appl Physiol 15:92-06
    47. Patel DJ, De Freitas FM, Mallos AJ (1962) Mechanical function of the main pulmonary artery. J Appl Physiol 17:205-08
    48. Peacock AJ, Rubin LJ (2004) Pulmonary circulation: diseases and their treatment, 2nd edn. Hodder Arnold Publication, London
    49. Peacock AJ, Murphy NF, McMurray JJV et al (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30:104-09 CrossRef
    50. Peskin E (1961) Transient and steady-state analysis of electric networks. Van Nostrand Company, Princeton, NJ, pp 304-78
    51. Pollanen MS (1992) Dimensional optimization at different levels at the arterial hierarchy. J Theor Biol 159:267-70 CrossRef
    52. Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77:1017-023 CrossRef
    53. Reeves JT, Linehan JH, Stenmark KR (2005) Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol 288:L419–L425 CrossRef
    54. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222 CrossRef
    55. Sherwin SJ, Franke V, Perio J, Parker K (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217-50 CrossRef
    56. Simonneau G, Galle N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5-2 CrossRef
    57. Singhal S, Henderson R, Horsfield K, Harding K, Cumming G (1973) Morphometry of the human pulmonary arterial tree. Circ Res 33:190-97 CrossRef
    58. Sitbon O, Lascoux-Combe C, Delfraissy JF et al (2008) Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med 177:108-11 CrossRef
    59. Steele BN, Olufsen MS, Taylor CA (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput Methods Biomech Biomed Eng 10:39-1 CrossRef
    60. Suwa N, Niwa T, Fukasawa H, Sasaki Y (1963) Estimation of intravascular blood pressure gradients by mathematical analysis of arterial casts. Tohoku J Exp Med 79:168-98 CrossRef
    61. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN et al (1999) Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 4:231-47 CrossRef
    62. Thurlbeck WM, Churg AM (1995) Pathology of the lungs, 2nd edn. Thieme Medical Publishers, New York
    63. Tuder RM, Yun JH, Bhunia A, Fijalkowska I (2007) Hypoxia and chronic lung disease. J Mol Med 85:1317-324 CrossRef
    64. Uylings HBM (1977) Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol 39:509-20 CrossRef
    65. Valdez-Jasso D, Haider MA, Campbell AL, Bia D, Zocalo Y, Armentano RL, Olufsen MS (2009) Modeling viscoelastic wall properties of ovine arteries. In: Proceedings of ASME 2009, summer bioengineering conference SBC2009-205640
    66. Vaughan GDA (2010) Pulse propagation in the pulmonary and systemic arteries. PhD Thesis, Faculty of Information and Mathematical Sciences, University of Glasgow, UK
    67. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776-796 CrossRef
    68. van de Vosse FN, Stergiopulos N (2011) Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43:467-99 CrossRef
    69. Weibel ER (2009) What makes a good lung? The morphometric basis of lung function. Swiss Med Wkly 139:375-86
    70. Xiao N, Humphrey JD, Figueroa CA (2013) Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys 244:22-0 CrossRef
    71. Yen RT, Rong Z, Zhang B (1990) Elasticity of pulmonary blood vessels in human lungs. In: Farrell Epstein MA, Ligas JR (eds) Respiratory biomechanics: engineering analysis of structure and function. Springer, New York, pp 109-16
    72. Yen RT, Sobin SS (1988) Elasticity of arterioles and venules in postmortem human lungs. J Appl Physiol 64(2):611-19
    73. Zhuang FY, Fung YC, Yen RT (1983) Analysis of blood flow in cats lung with detailed anatomical and elasticity data. J Appl Physiol 55(4):1341-348
    74. Zhuang FY, Fung YC, Yen RT (1983) Analysis of blood flow in cats lung with detailed anatomical and elasticity data. J Appl Physiol 55(4):1341-348
  • 作者单位:M. Umar Qureshi (1) (2)
    Gareth D. A. Vaughan (2)
    Christopher Sainsbury (3)
    Martin Johnson (4)
    Charles S. Peskin (5)
    Mette S. Olufsen (6)
    N. A. Hill (2)

    1. Department of Mathematics, International Islamic University, Sector H10, Islamabad, 44000, Pakistan
    2. School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
    3. School of Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
    4. Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, G81 4D7, UK
    5. Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA
    6. Department of Mathematics, North Carolina State University, Raleigh, NC, 27502, USA
  • ISSN:1617-7940
文摘
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2?mmHg. Each terminal vessel in the network of ‘large-arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller-arteries and veins of radii \(\ge \) 50? \(\upmu \) m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700