Geochemistry and genetic model of the ore-bearing sediments of the Parnok ferromanganese deposit, Polar Urals
详细信息    查看全文
  • 作者:A. I. Brusnitsyn (1)
  • 关键词:Manganese deposits ; geochemistry of metalliferous and ore ; bearing sediments ; hydrothermal ; sedimentary ore genesis
  • 刊名:Geochemistry International
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:51
  • 期:8
  • 页码:623-645
  • 全文大小:2862KB
  • 参考文献:1. M. A. Shishkin and N. N. Gerasimov, 鈥淭he Parnok ferromanganese deposit (Polar Urals),鈥?Geol. Rudn. Mestorozhd. 37(5), 445鈥?56 (1995).
    2. N. N. Gerasimov, Extended Abstracts of Candidate鈥檚 Dissertation in Geology and Mineralogy (MSU, Moscow, 2000) [in Russian].
    3. N. N. Zykin, 鈥淕eological structure and genesis of the Parnok ferromanganese deposit, Polar Urals,鈥?Vestn. Mosk. Gos. Univ., Ser. 4: Geol., No. 2, 40鈥?9 (2004).
    4. Ya. E. Yudovich, M. A. Shishkin, N. V. Lyutikov, M. P. Ketris, and A. A. Belyaev, / Geochemistry and Ore Genesis of Black Shales from the Lembva Zone, North Urals (Prolog, Syktyvkar, 1998) [in Russian].
    5. N. N. Gerasimov, V. Kh. Nasedkina, S. A. Onishchenko, and M. A. Shishkin, 鈥淢ineral composition of ores of the Parnok ferromanganese deposit (Polar Urals, Russia),鈥?Geol. Ore Dep. 41(1), 73鈥?3 (1999).
    6. E. S. Kontar鈥? K. P. Savel鈥檈va, A. V. Surganov, B. M. Aleshin, M. A. Shishkin, N. N. Gerasimov, D. A. Kostromin, O. B. Papulova, and V. V. Sergeeva, / Manganese Deposits of the Urals (Yekaterinburg, 1999) [in Russian].
    7. A. S. Stolyarov, E. I. Ivleva, A. B. Khalezov, and I. G. Pechenkin, / Manganese of Russia: State and Prospects of Development of Raw Mineral Base (VIMS, Moscow, 2009) [in Russian].
    8. K. G. Voinovskii-Kriger, 鈥淭o Paleozoic complex on the western slope of the Polar Urals,鈥?Sovetskaya Geol., No. 6, 27鈥?4 (1945).
    9. Puchkov, V.N., / Bathyal Complexes of Passive Margins of Geosynclinal Areas (Nauka, Moscow, 1979).
    10. J. Maynard, / Geochemistry of Sedimentary Ore Deposits (Springer, Heidelberg, 1985) [in Russian].
    11. G. Yu. Butuzova, / Hydrothermal-Sedimentary Ore Formation in the Red Sea Rift Zone (Geos, Moscow, 1998) [in Russian].
    12. E. V. Zaikova, / Siliceous Rocks of Ophiolite Associations by the Examples of Mugodzhary (Nauka, Moscow, 1991) [in Russian].
    13. Y.-H. Li and J. E. Schoonmaker, 鈥淐hemical composition and mineralogy of marine sediments,鈥?in / Treatise on Geochemistry. Vol. 7. Sediments, Diagenesis, and Sedimentary Rocks (Elsevier, 2003), pp. 1鈥?5.
    14. V. I. Silaev, / Mechanisms and Regularities of Epigenetic Manganese Mineral Formation (UrO RAN, Yekaterinburg, 2008) [in Russian].
    15. Ya. M. Kislyakov and V. N. Shchetochkin, / Hydrogenic Ore Formation (ZAO 鈥淕eoinfommark鈥? Moscow, 2000) [in Russian].
    16. V. I. Starostin and P. A. Ignatov, / Geology of Mineral Resources (MGU, Akademicheskii proekt, Moscow, 2004) [in Russian].
    17. L. Robb, 鈥淚ntroduction to Ore-Forming Processes,鈥?(Blackwell Publishing, Oxford, 2005).
    18. K. Nicholson, 鈥淐ontrasting mineralogical-geochemical signatures of manganese oxides: guides to metallogenesis,鈥?Econ. Geol. 87, 1253鈥?264 (1992). CrossRef
    19. E. Bonatti, M. Zerbi, R. Kay, and H. Rydell, 鈥淢etalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centers,鈥?Geol. Soc. Am. Bull. 87, 83鈥?4 (1976). CrossRef
    20. S. Roy, / Manganese Deposits (Acad. Press, London, 1986) [in Russian].
    21. J. B. Maynard, 鈥淢anganiferous Sediments, Rocks and Ores,鈥?in / Treatise of Geochemistry, Ed. by F. T. McKenzie (Elsevier-Pergamon, Oxford, 2004), Vol. 7, pp. 289鈥?08.
    22. A. V. Dubinin, / Geochemistry of Rare-Earth Elements in Ocean (Nauka, Moscow, 2006) [in Russian].
    23. R. W. Murray, M. R. Buchholtz Ten Brink, D. C. Gerlach, G. Russ III, and D. L. Jones, 鈥淩are earth elements as indicator of different marine depositional environment in chert and shale,鈥?Geology 18, 168鈥?71 (1990). CrossRef
    24. G. Rantitsch, F. Melcher, Th. Meisel, and Th. Rainer, 鈥淩are earth, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits,鈥?Mineral. Petrol. 77, 109鈥?27 (2003). CrossRef
    25. J. S. Huebner, M. J. K. Flohr, and J. N. Grossman, 鈥淐hemical fluxes and origin of manganese carbonate-oxide-silicate deposit in bedded chert,鈥?Chem. Geol. 100, 93鈥?18 (1992). CrossRef
    26. J. Gutzmer and N. J. Beukes, 鈥淭he manganese formatiom of the Neoproterozoic Penganga Group, India-revision of an enigma,鈥?Econ. Geol. 93, 1091鈥?102 (1998). CrossRef
    27. M. Munteanu, S. Marincea, H. U. Kasper, K. Zak, V. Alexe, V. Trandafir, G. Saptefrati, and A. Mihalache, 鈥淏lack chert-hosted manganese deposits from the Bistritei Mountains, Eastern Carpathians (Romania): petrography, genesis and metamorphic evolution,鈥?Ore Geol. Rev. 24, 45鈥?5 (2004). CrossRef
    28. H. Huckriede and D. Meischner, 鈥淥rigin and environment of manganese-rich sediments within black-shale basins,鈥?Geochim. Cosmochim. Acta 60, 1399鈥?413 (1996). CrossRef
    29. E. R. Force and W. F. Cannon, 鈥淒epositional model for shallow-marine manganese deposits around Black Shale basins,鈥?Econ. Geol. 83, 93鈥?17 (1988). CrossRef
    30. V. N. Kholodov, 鈥淭he role of H2S-contaminated basins in sedimentary ore formation,鈥?Lithol. Miner. Resour. 37(5), 393鈥?11 (2002). CrossRef
    31. R. I. Nedumov, 鈥淢anganese ore potential related to hydrosulfuric pollution of bottom waters (with the Black Sea as an example),鈥?Lithol. Miner. Resour. 41(1), 15鈥?6 (2006). CrossRef
    32. E. M. Emelyanov, 鈥淔erromanganese ore process in the Baltic Sea,鈥?Lithol. Miner. Resour. 46(3), 199鈥?19 (2011). CrossRef
    33. A. I. Brusnitsyn and V. N. Kuleshov, 鈥淕eochemistry of ore-bearing deposits of the Parnok ferromanganese deposit (Polar Urals),鈥?in / Metallogeny of Ancient and Modern Oceans. 2011. Ore Potential of Sedimentary-Volcanogenic and Ultrabasite Complexes (Imin UrO RAN, Miass, 2011), pp. 97鈥?04 [in Russian].
    34. A. J. Fleet and A. H. F. Robertson, 鈥淥cean-ridge metalliferous and pelagic sediments of the Semail Napope, Oman,鈥?J. Geol. Soc. London 137, 403鈥?22 (1980). CrossRef
    35. D. A. Crerar, J. Namson, M. S. Chyi, L. Williams, and M. D. Feigenson, 鈥淢anganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers,鈥?Econ. Geol. 77, 519鈥?40 (1982). CrossRef
    36. A. I. Brusnitsyn and I. G. Zhukov, 鈥淢anganese-bearing rocks of the Magnitogorsk paleovolcanic belt, the South Urals: structure of lodes, composition, and genesis,鈥?Litosfera, No. 2, 77鈥?9 (2010).
    37. J. Honnorez, R. P. Von Herzen, T. J. Barrett, P. E. Borella, S. A. Moorby, S. Karato, et al., Hydrothermal mounds and young ocean crust of the Galapagos: preliminary deep sea drilling results,鈥?Init. Rept. Deep Sea Drill. Project 70, 459鈥?81 (1983).
    38. A. I. Gorshkov, V. A. Drits, G. A. Dubinina, O. A. Bogdanova, and A. V. Sivtsov, 鈥淐rystallochemical nature, mineralogy, and genesis of Fe- and Fe-Mn deposits of the Franklin Seamount hydrothermal field,鈥?Litol. Polezn. Iskop., No. 4, 3鈥?4 (1992).
    39. Yu. A. Bogdanov, A. P. Lisitzin, R. A. Binns, A. I. Gorshkov, E. G. Gurvich, V. A. Dritz, G. A. Dubinina, O. Yu. Bogdanova, A. V. Sivkov, and V. M. Kuptsov, 鈥淟ow-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea,鈥?Mar. Geol. 142(1鈥?), 99鈥?17 (1997). CrossRef
    40. E. V. Starikova, 鈥淐adastre of low-temperature hydrothermal-sedimentary deposits of modern ocean, in / Metallogeny of Ancient and Modern Oceans. Formation of Deposits on the Oceanic Margins of Different Age(Inst. Min UrO RAN, Miass, 2005), Vol. 1, pp. 77鈥?1 [in Russian].
    41. K. B. Krauskopf, 鈥淪eparation of manganese from iron in sedimentary processes,鈥?Geochim. Cosmochim. Acta 12, 61鈥?4 (1957). CrossRef
    42. J. D. Hem, 鈥淐hemical factors that influence the availability of iron and manganese in aqueous systems,鈥?Geol. Soc. Am. Bull. 83, 443鈥?50 (1972). CrossRef
    43. A. A. Rozhnov, 鈥淐omparative characteristics of manganese deposits of the Atasui and Nikopol-Chiatur types,鈥?in / Manganese Geology and Geochemistry (Nauka, Moscow, 1982), pp. 116鈥?21 [in Russian].
    44. I. M. Varentsov, A. B. Veinmarn, A. A. Rozhnov, V. I. Shibrik, A. A. Sokolova, 鈥淕eochemical model of the formation of manganese ores of the Famennian riftogenic basin of Kazakhstan: major components, rare-earth and trace elements),鈥?Litol. Polezn. Iskop., No. 3, pp. 56鈥?9 (1993).
    45. E. G. Gurvich, / Metalliferous Sediments of the World Ocean (Nauchnyi mir, Moscow, 1998) [in Russian].
    46. V. V. Sapozhnikov, Yu. A. Rudyakov, and A. I. Agatova, 鈥淣utrient Regeneration in the Course of Mesoplankton Decomposition,鈥?in / Frontal Zones of the Southeastern Pacific (Nauka, Moscow, 1984), pp. 4鈥?1 [in Russian].
    47. L. Frakes and B. Bolton, 鈥淥rigin of manganese giants: sea level vhange and anoxic-oxic history,鈥?Geology 12, 83鈥?6 (1984). CrossRef
    48. V. N. Kholodov and R. I. Nedumov, 鈥淭he role of black shales in the formation of phosphate and manganese ores,鈥?Lithol. Miner. Resour. 46(4), 321鈥?52 (2011). CrossRef
    49. V. N. Kholodov, 鈥淣ew in understanding the catagenesis. II Elision catagenesis,鈥?Litol. Polezn. Iskop., No. 5, 15鈥?2 (1985).
    50. D. I. Pavlov, 鈥淩elation of iron and manganese sedimentary deposits with petroleum basins,鈥?Geol. Rudn. Mestorozhd., No. 2, 80鈥?1 (1989).
    51. V. N. Kuleshov and Zh. V. Dombrovskaya, 鈥淢anganese deposits of Georgia: Communication 2. Origin of the manganese ores, with the Chiatura and Kvirila deposits as examples,鈥?Lithol. Miner. Resour. 32(4), 295鈥?09 (1997).
    52. A. S. Astakhov, N. V. Astakhova, V. V. Satarova, A. I. Svininnikov, E. V. Gretskaya, N. G. Vashchenkova, and M. V. Ivanov, / Sedimentation and Ore Genesis in the Deryugin Basin, Sea of Okhotsk (Dal鈥檔auka, Vladivostok, 2008) [in Russian].
  • 作者单位:A. I. Brusnitsyn (1)

    1. St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
  • ISSN:1556-1968
文摘
The Parnok ferromanganese deposit is confined to the black shales of the western slope of the Polar Urals. The deposit area is made up of weakly metamorphosed terrigenous-carbonate rocks formed in a marine basin at a passive continental margin. Ore-bearing sequence is composed of coaliferous clayey-siliceous-calcareous shales comprising beds and lenses of pelitomorphic limestones, and iron and manganese ores. The iron ores practically completely consist of micrograined massive magnetite. The manganese ores are represented by lenticular-bedded rocks consisting of hausmannite, rhodochrosite, and diverse manganese silicates. With respect to relations between indicator elements (Fe, Mn, Al, Ti), the shales are ascribed to pelagic sediments with normal concentrations of Fe and Mn, the limestones correspond to metalliferous sediments, ferruginous sediments are ore-bearing sediments, while manganese rocks occupy an intermediate position. It was found that the concentrations of trace elements typical of submarine hydrothermal solutions (As, Ge, Ni, Pb, Sb, Zn, etc.) in both the ore types are in excess of those in lithogenic component. At the same time, the indicator elements of terrigenous material (Al, Ti, Hf, Nb, Th, Zr, and others) in the ores are several times lower than those in the host shales (background sediments). REE distribution patterns in iron ores show the positive Eu anomaly, while those in manganese ores, the positive Ce anomaly. In general, the chemical composition of the ores indicates their formation in the hydrothermal discharge zone. The peculiar feature of the studied object is the manifestation of hydrothermal vents in sedimentary basin without evident signs of volcanic activity. Hydrothermal solutions were formed in terrigenous-carbonate sequence mainly at the expense of buried sedimentation waters. The hydrothermal system was likely activated by rejuvenation of tectonic and magmatic processes at the basement of sedimentary sequences. Solutions leached iron, manganese, and other elements from sedimentary rocks and transported them to the seafloor. Their discharge occurred in relatively closed marine basin under intermittent anaerobic conditions. Eh-pH variations led to the differentiation of Fe and Mn and accumulation of chemically contrasting ore-bearing sediments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700