Characterization and expression pattern analysis of microRNAs in wheat under drought stress
详细信息    查看全文
  • 作者:Y. -Y. Zhao (1)
    C. -J. Guo (1)
    X. -J. Li (2)
    W. -W. Duan (1)
    C. -Y. Ma (1)
    H. -M. Chan (1)
    Y. -L. Wen (2)
    W. -J. Lu (2)
    K. Xiao (1)

    1. College of Agronomy
    ; Agricultural University of Hebei ; Baoding ; 071001 ; P.R. China
    2. College of Life Sciences
    ; Agricultural University of Hebei ; Baoding ; 071001 ; P.R. China
  • 关键词:organ specific expression ; qPCR ; target genes ; Triticum aestivum
  • 刊名:Biologia Plantarum
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:59
  • 期:1
  • 页码:37-46
  • 全文大小:1,328 KB
  • 参考文献:1. Allen, E., Xie, Z., Gustafson, A.M., Carrington, J.C.: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. 鈥?Cell 121: 207鈥?21, 2005. CrossRef
    2. Almeida, T., Pinto, G., Correia, B., Santos, C., Gon莽alves, S.: QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in / Quercus suber. 鈥?Plant Physiol. Biochem. 73: 274鈥?81, 2013. CrossRef
    3. Barrera-Figueroa, B.E., Gao, L., Diop, N.N., Wu, Z., Ehlers, J.D., Roberts, P.A., Close, T.J., Zhu, J.K., Liu, R.: Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. 鈥?PLoS One 7: e30039, 2012. CrossRef
    4. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. 鈥?Cell 116: 281鈥?97, 2010. CrossRef
    5. Bruex, A., Kainkaryam, R.M., Wieckowski, Y., Kang, Y.H., Bernhardt, C., Xia, Y., Zheng, X., Wang, J.Y., Lee, M.M., Benfey, P., Woolf, P.J., Schiefelbein, J.: A gene regulatory network for root epidermis cell differentiation in / Arabidopsis. 鈥?PLoS Genet. 8: e1002446, 2012. CrossRef
    6. Choi, H.W., Hwang, B.K.: The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. 鈥?Planta 235: 1369鈥?382, 2012. CrossRef
    7. Dalmay, T.: Mechanism of miRNA-mediated repression of mRNA translation. 鈥?Essays Biochem. 54: 29鈥?8, 2013. CrossRef
    8. Ferreira, T.H., Gentile, A., Vilela, R.D., Costa, G.G.L., Dias, L.I., Endres, L., Menossi, M.: microRNAs associated with drought response in the bioenergy crop sugarcane ( / Saccharum spp.). 鈥?BMC Plant Biol. 11: 127, 2011. CrossRef
    9. Fleury, D., Jefferies, S., Kuchel, H., Langridge, P.: Genetic and genomic tools to improve drought tolerance in wheat. 鈥?J. exp. Bot. 61: 3211鈥?222, 2010. CrossRef
    10. G贸mez-Porras, J.L., Ria帽o-Pach贸n, D.M., Dreyer, I., Mayer, J.E., Mueller-Roeber, B.: Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in / Arabidopsis and rice. 鈥?BMC Genom. 8: 260, 2007. CrossRef
    11. Kang, G.Z., Li, G. Z., Liu, G.Q., Wu, W., Peng, X.Q., Wang, C.Y., Zhu, Y.J., Guo, T.C.: Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. 鈥?Biol. Plant. 57: 718鈥?24, 2013. CrossRef
    12. Kayihan, C., Eyidogan, F., Afsar, N., Oktem, H.A., Yucel, M.: Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars. 鈥?Biol. Plant. 56: 693鈥?98, 2012. CrossRef
    13. Kong, Y., Elling, A.A., Chen, B., Deng, X.W.: Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. 鈥?Amer. J. Plant Sci. 1: 69鈥?6, 2010. CrossRef
    14. Kantar, M., Lucas, S.J., Budak, H.: miRNA expression patterns of / Triticum dicoccoides in response to shock drought stress. 鈥?Planta 233: 471鈥?84, 2011. CrossRef
    15. Li, J., Guo, G., Guo, W., Guo, G., Tong, D., Ni, Z., Sun, Q., Yao, Y.: miRNA164-directed cleavage of / ZmNAC1 confers lateral root development in maize ( / Zea mays L.). 鈥?BMC Plant Biol. 12: 220, 2012a. CrossRef
    16. Li, W., Cui, X., Meng, Z., Huang, X., Xie, Q., Wu, H., Jin, H., Zhang, D., Liang, W.: Transcriptional regulation of / Arabidopsis MIR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. 鈥?Plant Physiol. 158: 1279鈥?292, 2012b. CrossRef
    17. Liu, H.H., Tian, X., Li, Y.J., Wu, C.A., Zheng, C.C.: Microarray-based analysis of stress-regulated microRNAs in / Arabidopsis thaliana. 鈥?RNA 14: 836鈥?43, 2008. CrossRef
    18. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta C_T }\) method. 鈥?Methods 25: 402鈥?08, 2001. CrossRef
    19. Maruyama, K., Todaka, D., Mizoi, J., Yoshida, T., Kidokoro, S., Matsukura, S., Takasaki, H., Sakurai, T., Yamamoto, Y.Y., Yoshiwara, K., Kojima, M., Sakakibara, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of / cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in / Arabidopsis, rice, and soybean. 鈥?DNA Res. 19: 37鈥?9, 2012. CrossRef
    20. Millar, A.A., Waterhouse, P.M.: Plant and animal microRNAs: similarities and differences. 鈥?Funct. Integr. Genom. 5: 129鈥?35, 2005. CrossRef
    21. Movahedi, S., Sayed Tabatabaei, B.E., Alizade, H., Ghobadi, C.: Constitutive expression of / Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. 鈥?Biol. Plant. 56: 37鈥?2, 2012. CrossRef
    22. Mutum, R.D., Balyan, S.C., Kansal, S., Agarwal, P., Kumar, S., Kumar, M., Raghuvanshi, S.: Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. 鈥?FEBS J. 280: 1717鈥?730, 2013. CrossRef
    23. Ram, G., Sharma, A.D.: / In silico analysis of putative miRNAs and their target genes in sorghum ( / Sorghum bicolor). 鈥?Int. J. Bioinform. Res. Appl. 9: 233, 2013. CrossRef
    24. Seo, P.J., Xiang, F., Qiao, M., Park, J.Y., Lee, Y.N., Kim, S.G., Lee, Y.H., Park, W.J., Park, C.M.: The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in / Arabidopsis. 鈥?Plant Physiol. 151: 275鈥?89, 2009. CrossRef
    25. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene expression and signal transduction in water-stress response. 鈥?Plant Physiol. 115: 327鈥?34, 1997. CrossRef
    26. Shuai, P., Liang, D., Zhang, Z., Yin, W., Xia, X.: Identification of drought-responsive and novel / Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. 鈥?BMC Genom. 14: 233, 2013. CrossRef
    27. Song, J.B., Gao, S., Sun, D., Li, H., Shu, X.X., Yang, Z.M.: miR394 and LCR are involved in / Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. 鈥?BMC Plant Biol. 13: 210, 2013. CrossRef
    28. Sun, Z.H., Ding, C.H, Li, X.M, Xiao, K.: Molecular characterization and expression analysis of / TaZFP15, a C2H2- type zinc finger transcription factor gene in wheat ( / Triticum aestivum L.). 鈥?J. integr. Agr. 11: 31鈥?2, 2012. CrossRef
    29. Sunkar, R.: MicroRNAs with macro-effects on plant stress responses. 鈥?Semin. Cell Dev. Biol. 21: 805鈥?11, 2010. CrossRef
    30. Sunkar, R., Kapoor, A., Zhu, J.K.: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in / Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. 鈥?Plant Cell 18: 2051鈥?065, 2006. CrossRef
    31. Tang, Z., Zhang, L., Xu, C., Yuan., S., Zhang, F., Zheng, Y., Zhao, C.: Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. 鈥?Plant Physiol. 159: 721鈥?38, 2012. CrossRef
    32. Tian, F.X., Gong, J.F., Wang, G.P., Wang, G.K., Fan, Z.Y., Wang, W.: Improved drought resistance in a wheat stay-green mutant / tasg1 under field conditions. 鈥?Biol. Plant. 56: 509鈥?15, 2012. CrossRef
    33. Toker, C., Canci, H., Yildirim, T.: Evaluation of perennial wild / Cicer species for drought resistance. 鈥?Genet. Resour. Crop Evol. 54: 1781鈥?786, 2007. CrossRef
    34. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. 鈥?Plant Cell Physiol. 51: 1821鈥?839, 2010. CrossRef
    35. Vidal, E.A., Araus, V., Lu, C., Parry, G., Green, P.J., Coruzzi, G.M., Guti茅rrez, R.A.: Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in / Arabidopsis thaliana. 鈥?Proc. nat. Acad. Sci. USA 9: 349鈥?64, 2013.
    36. Voinnet, O.: Origin, biogenesis, and activity of plant microRNAs. 鈥?Cell 136: 669鈥?87, 2009. CrossRef
    37. Vivek, P.J., Tuteja, N., Soniya, E.V.: CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in / Nicotiana tabacum. 鈥?PLoS One 23: e76392, 2013.
    38. Won, S.K., Lee, Y., Lee, H.Y., Heo, Y.K., Cho, M., Cho, H.T.: / cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in / Arabidopsis. 鈥?Plant Physiol. 150: 1459鈥?473, 2009. CrossRef
    39. Xia, K., Wang, R., Qu, X., Fang, Z., Tian, C., Duan, J., Wang, Y., Zhang, M.: / OsTIR1 and / OsAFB2 downregulation / via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. 鈥?Proc. nat. Acad. Sci. USA 107: 4477鈥?482, 2010. CrossRef
    40. Xin, M., Wang, Y., Yao., Y, Xie, C., Peng, H., Ni, Z., Sun, Q.: Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat ( / Triticum aestivum L.). 鈥?BMC Plant Biol. 10: 123, 2010. CrossRef
    41. Xu, W., Yang, R., Li, M., Xing, Z., Chen, G., Guo, H., Gong, X., Du, Z., Zhang, Z., Hu X., Wang D., Qian, Q., Wang, T., Su, Z., Xue, Y.: Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves. 鈥?PLoS One 6: e17613, 2011a. CrossRef
    42. Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, SJ, Zhang, S, Bi, Y, Xie, C.: Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. 鈥?PLoS One 6: e28009, 2011b. CrossRef
    43. Yang, L., Wu, G., Poethig, R.S.: Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in / Arabidopsis. 鈥?Proc. nat. Acad. Sci. USA 109: 315鈥?20, 2012. CrossRef
    44. Zhang, H.M., Zhang, L.S., Liu, L., Zhu, W.N., Yang, W.B.: Changes of dehydrin profiles induced by drought in winter wheat at different developmental stages. 鈥?Biol. Plant. 57: 797鈥?00, 2013. CrossRef
    45. Zhang, L., Yu, S., Zuo, K., Luo, L., Tang, K.: Identification of gene modules associated with drought response in rice by network-based analysis. 鈥?PLoS One 7: e33748, 2012. CrossRef
    46. Zhang, L., Xie, X., Song, Y., Jiang, F., Zhu, C., Wen, F.: Viral resistance mediated by shRNA depends on the sequence similarity and mismatched sites between the target sequence and siRNA. 鈥?Biol. Plant. 57: 547鈥?54, 2013. CrossRef
    47. Zhang, Z., Wei, L., Zou, X., Tao, Y., Liu, Z., Zheng, Y.: Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. 鈥?Ann Bot. 102: 509鈥?19, 2008. CrossRef
    48. Zhao, X., Liu, X., Guo, C., Gu, J., Xiao, K.: Identification and characterization of microRNAs from wheat ( / Triticum aestivum L.) under phosphorus deprivation. 鈥?J. Plant Biochem. Biotechnol. 22: 113鈥?23, 2013. CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1573-8264
文摘
Plant microRNAs (miRNAs) play important roles in regulating plant growth, development, and responses to abiotic stresses. In this study, 38 miRNAs (TaMIRs) from wheat (Triticum aestivum L.), 36 from the miRBase database, and two from our previous work were characterized and subjected to an expression pattern analysis under normal conditions and a drought stress. A semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), real-time quantitative PCR (qPCR), and small RNA blot analyses revealed that two TaMIRs (TaMIR1120 and TaMIR1123) were root-predominant and two TaMIRs (TaMIR1121 and TaMIR1134) were leaf-predominant. Seven TaMIR precursors showed altered expressions after the drought; of these, TaMIR1136 was upregulated, whereas TaMIR156, TaMIR408, TaMIR1119, TaMIR1129, TaMIR1133, and TaMIR1139 were downregulated. These seven drought-responsive TaMIRs showed dose-dependent and typical temporal expression patterns during drought induction, and they gradually returned back under the normal growth conditions. The drought-responsive and the tissue-predominant TaMIRs had varying numbers of target genes. Randomly selected target genes exhibited opposite expression patterns to their corresponding TaMIRs suggesting that they were regulated by distinct TaMIRs through a post-transcriptional cleavage. The target genes regulated by drought-responsive and tissue-predominant TaMIRs are involved in various cellular processes, such as signal transduction, transcriptional regulation, primary and secondary metabolisms, development, and defense responses. These results provide a novel insight into the miRNA-mediated responses of wheat to drought stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700