Enhancement of Photo-Oxidation Activities Depending on Structural Distortion of Fe-Doped TiO2 Nanoparticles
详细信息    查看全文
  • 作者:Yeonwoo Kim ; Sena Yang ; Eun Hee Jeon ; Jaeyoon Baik…
  • 关键词:Distorted TiO2 ; 2 ; Aminothiophenol ; Photo ; oxidation ; Bandgap narrowing
  • 刊名:Nanoscale Research Letters
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:1,756 KB
  • 参考文献:1.Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–89CrossRef
    2.Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043CrossRef
    3.Tryba B, Morawski AW, Inagaki M, Toyoda M (2006) The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe–TiO2 and Fe–C–TiO2 photocatalysts. Appl Catal B 63:215–21CrossRef
    4.Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–82CrossRef
    5.Lun Pang C, Lindsay R, Thornton G (2008) Chemical reactions on rutile TiO2 (110). Chem Soc Rev 37:2328–53CrossRef
    6.Nozik AJ, Miller J (2010) Introduction to solar photon conversion. Chem Rev 110:6443–45CrossRef
    7.Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66CrossRef
    8.Malagutti AR, Mourão HAJL, Garbin JR, Ribeiro C (2009) Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl Catal B 90:205–12CrossRef
    9.Gil S, Garcia-Vargas J, Liotta L, Pantaleo G, Ousmane M, Retailleau L, Giroir-Fendler A (2015) Catalytic oxidation of propene over Pd catalysts supported on CeO2, TiO2, Al2O3 and M/Al2O3 oxides (M = Ce, Ti, Fe, Mn). Catalysts 5:671–89CrossRef
    10.Xiao L, Zhang J, Cong Y, Tian B, Chen F, Anpo M (2006) Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2. Catal Lett 111:207–11CrossRef
    11.Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal 202:256–67CrossRef
    12.Falconer JL, Magrini-Bair KA (1998) Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2. J Catal 179:171–8CrossRef
    13.Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–9CrossRef
    14.Narayana RL, Matheswaran M, Aziz AA, Saravanan P (2011) Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination. Desalination 269:249–53CrossRef
    15.Reddy JK, Lalitha K, Reddy PVL, Sadanandam G, Subrahmanyam M, Kumari VD (2013) Fe/TiO2: a visible light active photocatalyst for the continuous production of hydrogen from water splitting under solar irradiation. Catal Lett 144:340–6CrossRef
    16.Li J, Jacobs G, Das T, Davis BH (2002) Fischer–Tropsch synthesis: effect of water on the catalytic properties of a ruthenium promoted Co/TiO2 catalyst. Appl Catal A 233:255–62CrossRef
    17.Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRef
    18.de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–78CrossRef
    19.Fu X, Wang Y, Wei F (2009) Low temperature phase transition of ilmenite during oxidation by chlorine. Mater Trans 50:2073–8CrossRef
    20.Pownceby MI, Fisher-White MJ, Swamy V (2001) Phase relations in the system Fe2O3–Cr2O3–TiO2 between 1000 and 1300 °C and the stability of (Cr, Fe)2Tin − 2O2n − 1 crystallographic shear structure compounds. J Solid State Chem 161:45–56CrossRef
    21.Drofenik M, Golič L, Hanzel D, Kraševec V, Prodan A, Bakker M, Kolar D (1981) A new monoclinic phase in the Fe2O3.TiO2 system. I. Structure determination and Mössbauer spectroscopy. J Solid State Chem 40:47–51CrossRef
    22.Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F (2007) Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys Rev B 75:035105CrossRef
    23.Yan W, Sun Z, Pan Z, Liu Q, Yao T, Wu Z, Song C, Zeng F, Xie Y, Hu T, Wei S (2009) Oxygen vacancy effect on room-temperature ferromagnetism of rutile Co:TiO2 thin films. Appl Phys Lett 94:042508CrossRef
    24.Henderson GS, Liu X, Fleet ME (2002) A Ti L-edge X-ray absorption study of Ti-silicate glasses. Phys Chem Min 29:32–42CrossRef
    25.Wang D, Liu L, Sun X, Sham T-K (2015) Observation of lithiation-induced structural variations in TiO2 nanotube arrays by X-ray absorption fine structure. J Mater Chem A 3:412–9CrossRef
    26.Kareev M, Prosandeev S, Liu J, Gan C, Kareev A, Freeland JW, Xiao M, Chakhalian J (2008) Atomic control and characterization of surface defect states of TiO2 terminated SrTiO3 single crystals. Appl Phys Lett 93:061909CrossRef
    27.Shen S, Zhou J, Dong C-L, Hu Y, Tseng EN, Guo P, Guo L, Mao SS (2014) Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Sci Rep 4:6627–35CrossRef
    28.Pollak M, Gautier M, Thromat N, Gota S, Mackrodt WC, Saunders VR (1995) An in-situ study of the surface phase transitions of α-Fe2O3 by X-ray absorption spectroscopy at the oxygen K edge. Nucl Instrum Methods Phys Res Sect B 97:383–6CrossRef
    29.Almeida TP, Kasama T, Muxworthy AR, Williams W, Nagy L, Hansen TW, Brown PD, Dunin-Borkowski RE (2014) Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles. Nat Commun 5:5154–9CrossRef
    30.Okada T, Takeda Y, Watanabe N, Haeiwa T, Sakai T, Mishima S (2014) Chemically stable magnetic nanoparticles for metal adsorption and solid acid catalysis in aqueous media. J Mater Chem A 2:5751–8CrossRef
    31.Jeon E, Yang S, Kim Y, Kim N, Shin H-J, Baik J, Kim H, Lee H (2015) Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates. Nanoscale Res Lett 10:361CrossRef
    32.Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-Doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–7CrossRef
    33.Zuo F, Wang L, Feng P (2014) Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. Int J Hydrogen Energy 39:711–7CrossRef
    34.Ren R, Wen Z, Cui S, Hou Y, Guo X, Chen J (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5:10714CrossRef
    35.Xiong L-B, Li J-L, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:1–13CrossRef
    36.Waterhouse GIN, Wahab AK, Al-Oufi M, Jovic V, Anjum DH, Sun-Waterhouse D, Llorca J, Idriss H (2013) Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci Rep 3:2849–53CrossRef
    37.Thomas AG, Syres KL (2012) Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem Soc Rev 41:4207–17CrossRef
    38.Lang X, Ma W, Chen C, Ji H, Zhao J (2014) Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc Chem Res 47:355–63CrossRef
    39.Wang Q, Zhang M, Chen C, Ma W, Zhao J (2010) Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a brønsted acid. Angew Chem Int Ed 49:7976–9CrossRef
    40.Nakamura R, Imanishi A, Murakoshi K, Nakato Y (2003) In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc 125:7443–50CrossRef
    41.Wuister S, Donegá C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–7CrossRef
    42.Yan J, Zhang Y, Liu S, Wu G, Li L, Guan N (2015) Facile synthesis of an iron doped rutile TiO2 photocatalyst for enhanced visible-light-driven water oxidation. J Mater Chem A 3:21434–8CrossRef
    43.Popa M, Diamandescu L, Vasiliu F, Teodorescu C, Cosoveanu V, Baia M, Feder M, Baia L, Danciu V (2009) Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 44:358–64CrossRef
    44.Jun J, Dhayal M, Shin J-H, Kim J-C, Getoff N (2006) Surface properties and photoactivity of TiO2 treated with electron beam. Radiat Phys Chem 75:583–9CrossRef
    45.Lee H, Shin M, Lee M, Hwang YJ (2015) Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Appl Catal B 165:20–6CrossRef
    46.Jug K, Nair NN, Bredow T (2005) Molecular dynamics investigation of oxygen vacancy diffusion in rutile. Phys Chem Chem Phys 7:2616–21CrossRef
  • 作者单位:Yeonwoo Kim (1)
    Sena Yang (1)
    Eun Hee Jeon (1)
    Jaeyoon Baik (2)
    Namdong Kim (2)
    Hyun Sung Kim (3)
    Hangil Lee (4)

    1. Molecular-Level Interfaces Research Center, Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
    2. Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, Kyungbuk, Republic of Korea
    3. Department of Chemistry, Pukyoung National University, Busan, 48513, Republic of Korea
    4. Department of Chemistry, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
To design a high-performance photocatalytic system with TiO2, it is necessary to reduce the bandgap and enhance the absorption efficiency. The reduction of the bandgap to the visible range was investigated with reference to the surface distortion of anatase TiO2 nanoparticles induced by varying Fe doping concentrations. Fe-doped TiO2 nanoparticles (Fe@TiO2) were synthesized by a hydrothermal method and analyzed by various surface analysis techniques such as transmission electron microscopy, Raman spectroscopy, X-ray diffraction, scanning transmission X-ray microscopy, and high-resolution photoemission spectroscopy. We observed that Fe doping over 5 wt.% gave rise to a distorted structure, i.e., Fe2Ti3O9, indicating numerous Ti3+ and oxygen-vacancy sites. The Ti3+ sites act as electron trap sites to deliver the electron to O2 as well as introduce the dopant level inside the bandgap, resulting in a significant increase in the photocatalytic oxidation reaction of thiol (–SH) of 2-aminothiophenol to sulfonic acid (–SO3H) under ultraviolet and visible light illumination. Keywords Distorted TiO2 2-Aminothiophenol Photo-oxidation Bandgap narrowing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700