Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis)
详细信息    查看全文
  • 作者:Daniel Alvarez-Torres ; Ana M. Podadera ; Julia Bejar ; Isabel Bandin…
  • 刊名:Veterinary Research
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:47
  • 期:1
  • 全文大小:1,719 KB
  • 参考文献:1.Langevin C, Aleksejeva E, Passoni G, Palha N, Levraud JP (2013) The antiviral innate response in fish: evolution and conservation of the IFN system. J Mol Biol 425:4904–4920CrossRef PubMed
    2.Kochs G, Reichelt M, Danino D, Hinshaw JE, Haller O (2005) Assay and functional analysis of dynamin-like Mx proteins. Methods Enzymol 404:632–643CrossRef PubMed
    3.Garcia-Rosado E, Alonso MC, Fernandez-Trujillo MA, Manchado M, Bejar J (2010) Characterization of flatfish Mx proteins. In: Nermann L, Meier S (eds) Veterinary immunology and immunopathology. Nova Science Publishers Inc, New York
    4.Collet B (2014) Innate immune response of salmonid fish to viral infections. Develop Comp Immunol 43:160–173CrossRef
    5.Wu YC, Lu YF, Chi SC (2010) Antiviral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of viral RdRp. Fish Shellfish Immunol 28:467–475CrossRef PubMed
    6.Haas AL, Ahrens P, Bright PM, Ankel H (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315–11323PubMed
    7.Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813PubMed
    8.Dao CT, Zhang DE (2005) ISG15: a ubiquitin-like enigma. Front Biosci 10:2701–2722CrossRef PubMed
    9.Osiak A, Utermöhlen O, Niendorf S, Horak I, Knobeloch KP (2005) ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 25:6338–6345CrossRef PubMed PubMedCentral
    10.Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, Zou W, de la Torre JC, Zhang DE (2006) Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol Cell Biol 26:472–479CrossRef PubMed PubMedCentral
    11.Verrier ER, Langevin C, Benmansour A, Boudinot P (2011) Early antiviral response and virus-induced genes in fish. Dev Comp Immunol 35:1204–1214CrossRef PubMed
    12.Rokenes TP, Larsen R, Robertsen B (2007) Atlantic salmon ISG15: expression and conjugation to cellular proteins in response to interferon, double-stranded RNA and virus infections. Mol Immunol 44:950–959CrossRef PubMed
    13.Huang X, Huang Y, Cai J, Wei S, Ouyang Z, Qin Q (2013) Molecular cloning, expression and functional analysis of ISG15 in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 34:1094–1102CrossRef PubMed
    14.Langevin C, van der Aa LM, Houel A, Torhy C, Briolat V, Lunazzi A, Harmache A, Bremont M, Levraud JP, Boudinot P (2013) Zebrafish ISG15 exerts a strong antiviral activity against RNA and DNA viruses and regulates the interferon response. J Virol 87:10025–10036CrossRef PubMed PubMedCentral
    15.Pereiro P, Costa MM, Diaz-Rosales P, Dios S, Figureueras A, Novoa B (2014) The first characterization of two type I interferons in turbot (Scophthalmus maximus) reveals their differential role, expression pattern and gene induction. Develop Comp Immunol 45:233–244CrossRef
    16.Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, Kaufman RJ (2000) Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha (P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry 39:12929–12938CrossRef PubMed
    17.Hu CY, Zhang YB, Huang GP, Zhang QY, Gui JF (2004) Molecular cloning and characterisation of a fish PKR-like gene from cultured CAB cells induced by UV inactivated virus. Fish Shellfish Immunol 17:353–366CrossRef PubMed
    18.Rothenburg S, Deigendesch N, Dittmar K, Koch-Nolte F, Haag F, Lowenhaupt K, Rich A (2005) A PKR-like eukaryotic initiation factor 2 kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc Natl Acad Sci USA 102:1602–1607CrossRef PubMed PubMedCentral
    19.Zhu R, Zhang YB, Zhang QY, Gui JF (2008) Functional domains and the antiviral effect of the double-stranded RNA-dependent protein kinase PKR from Paralichthys olivaceus. J Virol 82:6889–6901CrossRef PubMed PubMedCentral
    20.Zenke K, Nam YK, Kim KH (2010) Molecular cloning and expression analysis of double-stranded RNA-dependent protein kinase (PKR) in rock bream (Oplegnathus fasciatus). Vet Immunol Immunopathol 133:290–295CrossRef PubMed
    21.del Castillo S, Hikima JI, Ohtani M, Jung TS, Aoki T (2012) Characterization and functional analysis of two PKR genes in fugu (Takifugu rubripes). Fish Shellfish Immunol 32:79–88CrossRef PubMed
    22.Hu YS, Li W, Li DM, Liu Y, Fan LH, Rao ZC, Lin G, Hu CY (2013) Cloning, expression and functional analysis of PKR from grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol 35:1874–1881CrossRef PubMed
    23.Skall HF, Olesen NJ, Mellergaard S (2005) Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming-a review. J Fish Dis 28:509–529CrossRef PubMed
    24.Snow M, Bain N, Black J, Taupin V, Cunningham CO, King JA, Skall HF, Raynard RS (2004) Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Dis Aquat Organ 61:11–21CrossRef PubMed
    25.Moreno P, Olveira JG, Labella A, Cutrin JM, Baro JC, Borrego JJ, Dopazo CP (2014) Surveillance of viruses in wild fish populations in areas around the Gulf of Cadiz (South Atlantic Iberian Peninsula). Appl Environ Microbiol 80:6560–6571CrossRef PubMed PubMedCentral
    26.Lopez-Vazquez C, Conde M, Dopazo CP, Barja JL, Bandin I (2011) Susceptibility of juvenile sole Solea senegalensis to marine isolates of viral haemorrhagic septicaemia virus from wild and farmed fish. Dis Aquat Organ 93:111–116CrossRef PubMed
    27.Fernandez-Trujillo MA, Ferro P, Garcia-Rosado E, Infante C, Alonso MC, Bejar J, Borrego JJ, Manchado M (2008) Poly I: C induces Mx transcription and promotes an antiviral state against sole aquabirnavirus in the flatfish Senegalese sole (Solea senegalensis, Kaup). Fish Shellfish Immunol 24:279–285CrossRef PubMed
    28.Alvarez-Torres D, Garcia-Rosado E, Fernandez-Trujillo MA, Bejar J, Alvarez MC, Borrego JJ, Alonso MC (2013) Antiviral specificity of the Solea senegalensis Mx protein constitutively expressed in CHSE-214 cells. Mar Biotechnol 15:125–132CrossRef PubMed
    29.Alvarez-Torres D, Alonso MC, Garcia-Rosado E, Collet B, Bejar J (2014) Differential response of the Senegalese sole (Solea senegalensis) Mx promoter to viral infections in two salmonid cell lines. Vet Immunol Immunopathol 161:251–257CrossRef PubMed
    30.Lopez-Vazquez C, Dopazo CP, Barja JL, Bandin I (2007) Experimental infection of turbot, Psetta maxima (L.) with strains of viral haemorrhagic septicaemia virus isolated from wild and farmed marine fishes. J Fish Dis 30:303–312CrossRef PubMed
    31.Jensen MH (1963) Preparation of fish tissue culture for virus research. B World Health Organ 59:131–134
    32.Jensen MH (1965) Research on the virus of Egtved disease. Ann NY Acad Sci 126:422–426CrossRef PubMed
    33.Reed LJ, Muench H (1938) A simple method of estimating 50 per cent end-points. Am J Hyg 27:493–497
    34.Heppell J, Berthiaume L, Tarrab E, Lecomte J, Arella M (1992) Evidence of genomic variations between infectious pancreatic necrosis virus strains determined by restriction fragment profiles. J Gen Virol 73:2863–2870CrossRef PubMed
    35.Nishizawa T, Mori K, Nakai T, Iwao F, Kiyokuni M (1994) Polymerase chain reaction (PCR) amplification of RNA of striped jack nervous necrosis virus (SJNNV). Dis Aquat Organ 18:103–107CrossRef
    36.Lopez-Vazquez C, Dopazo CP, Olveira JG, Barja JL, Bandin I (2006) Development of a rapid, sensitive and non-lethal diagnostic assay for the detection of viral haemorrhagic septicaemia virus. J Virol Methods 133:167–174CrossRef PubMed
    37.Olveira JG, Souto S, Dopazo CP, Bandin I (2013) Isolation of betanodavirus from farmed turbot Psetta maxima showing no signs of viral encephalopathy and retinopathy. Aquaculture 406:125–130CrossRef
    38.Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408CrossRef PubMed
    39.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (RESEARCH0034)
    40.Plant KP, Harbottle H, Thune RL (2005) Poly I: C induces an antiviral state against Ictalurid Herpesvirus 1 and Mx1 transcription in the channel catfish (Ictalurus punctatus). Dev Comp Immunol 29:627–635CrossRef PubMed
    41.Lockhart K, McBeath AJ, Collet B, Snow M, Ellis AE (2007) Expression of Mx mRNA following infection with IPNV is greater in IPN-susceptible Atlantic salmon post-smolts than in IPN-resistant Atlantic salmon parr. Fish Shellfish Immunol 22:151–156CrossRef PubMed
    42.Tafalla C, Chico V, Perez L, Coll JM, Estepa A (2007) In vitro and in vivo differential expression of rainbow trout (Oncorhynchus mykiss) Mx isoforms in response to viral haemorrhagic septicaemia virus (VHSV) G gene, poly I: C and VHSV. Fish Shellfish Immunol 23:210–221CrossRef PubMed
    43.Zenke K, Kim KH (2009) Molecular cloning and expression analysis of three Mx isoforms of rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol 26:599–605CrossRef PubMed
    44.Bravo J, Acosta F, Padilla D, Grasso V, Real F (2011) Mx expression in gilthead sea bream (Sparus aurata, L.) in response to poly I:C, bacterial LPS and chromosomal DNA: preliminary study. Fish Shellfish Immunol 31:170–172CrossRef PubMed
    45.Falco A, Miest JJ, Pionnier N, Pietretti D, Forlenza M, Wiegertjes GF, Hoole D (2014) B-Glucan-supplemented diets increase poly(I:C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio). Fish Shellfish Immunol 36:494–502CrossRef PubMed
    46.O’Farrell C, Vaghefi N, Cantonnet M, Buteau B, Boudinot P, Benmansour A (2002) Survey of transcript expression in rainbow trout leukocytes reveals a major contribution of interferon-responsive genes in the early response to a rhabdovirus infection. J Virol 76:8040–8049CrossRef PubMed PubMedCentral
    47.Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR (2004) Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol 17:447–462CrossRef PubMed
    48.Avunje S, Wi-Sik K, Chang-Su P, Myung-Joo O, Sung-Ju J (2011) Toll-like receptors and interferon associated immune factors in viral haemorrhagic septicaemia virus infected olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 31:407–414CrossRef PubMed
    49.Nishizawa T, Takami I, Kokawa Y, Yoshimizu M (2009) Fish immunization using a synthetic double-stranded RNA Poly (I:C), an interferon inducer, offers protection against RGNNV, a fish nodavirus. Dis Aquat Organ 83:115–122CrossRef PubMed
    50.Oh MJ, Takami I, Nishizawa T, Kim WS, Kim CS, Kim SR, Park MA (2012) Field tests of poly(I:C) immunization with nervous necrosis virus (NNV) in seven band grouper, Epinephelus septemfasciatus (Thunberg). J Fish Dis 35:187–191CrossRef PubMed
    51.Kim WS, Kim JO, Cho JK, Oh MJ (2014) Change of viral hemorrhagic septicemia virus (VHSV) titer in olive flounder (Paralichthys olivaceus) following Poly(I:C) administration. Aquacult Int 22:1175–1179CrossRef
    52.Kim MS, Kim KH (2013) The role of viral hemorrhagic septicemia virus (VHSV) NV gene in TNF-α- and VHSV infection-mediated NF-κB activation. Fish Shellfish Immunol 34:1315–1319CrossRef PubMed
    53.Ammayappan A, Vakharia VN (2011) Nonvirion protein of novirhabdovirus suppresses apoptosis at the early stage of virus infection. J Virol 85:8393–8402CrossRef PubMed PubMedCentral
    54.Infante C, Matsuoka MP, Asensio E, Cañavate JP, Reith M, Manchado M (2008) Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol 9:28CrossRef PubMed PubMedCentral
    55.Benzekri H, Armesto P, Cousin X, Rovira M, Crespo D, Merlo MA, Mazurais D, Bautista R, Guerrero-Fernandez D, Fernandez-Pozo N, Ponce M, Infante C, Zambonino JL, Nidelet S, Gut M, Rebordinos L, Planas JV, Begout M-L, Claros MG, Manchado M (2014) De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genom 15:952CrossRef
  • 作者单位:Daniel Alvarez-Torres (1) (2)
    Ana M. Podadera (1) (4)
    Julia Bejar (2)
    Isabel Bandin (3)
    M. Carmen Alonso (1)
    Esther Garcia-Rosado (1)

    1. Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
    2. Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
    4. Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
    3. Departamento de Microbiología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • 刊物主题:Veterinary Medicine;
  • 出版者:BioMed Central
  • ISSN:1297-9716
文摘
Senegalese sole is susceptible to marine VHSV isolates but is not affected by freshwater isolates, which may indicate differences regarding virus-host immune system interaction. IFN I induces an antiviral state in fish, stimulating the expression of genes encoding antiviral proteins (ISG). In this study, the stimulation of the Senegalese sole IFN I by VHSV infections has been evaluated by the relative quantification of the transcription of several ISG (Mx, Isg15 and Pkr) after inoculation with marine (pathogenic) and freshwater (non-pathogenic) VHSV isolates. Compared to marine VHSV, lower levels of RNA of the freshwater VHSV induced transcription of ISG to similar levels, with the Isg15 showing the highest fold induction. The protective role of the IFN I system was evaluated in poly I:C-inoculated animals subsequently challenged with VHSV isolates. The cumulative mortality caused by the marine isolate in the control group was 68%, whereas in the poly I:C-stimulated group was 5%. The freshwater VHSV isolate did not cause any mortality. Furthermore, viral RNA fold change and viral titers were lower in animals from the poly I:C + VHSV groups than in the controls. The implication of the IFN I system in the protection observed was confirmed by the transcription of the ISG in animals from the poly I:C + VHSV groups. However, the marine VHSV isolate exerts a negative effect on the ISG transcription at 3 and 6 h post-inoculation (hpi), which is not observed for the freshwater isolate. This difference might be partly responsible for the virulence shown by the marine isolate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700