Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells
详细信息    查看全文
  • 作者:Elena Tosti ; Joseph A Katakowski ; Sonja Schaetzlein ; Hyun-Soo Kim…
  • 刊名:Genome Medicine
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:6
  • 期:9
  • 全文大小:2,411 KB
  • 参考文献:1. Rustgi AK: The genetics of hereditary colon cancer. / Genes Dev 2007, 21:2525-538.
    2. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A: Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). / N Engl J Med 2005, 352:1851-860.
    3. Iyer RR, Pluciennik A, Burdett V, Modrich PL: DNA mismatch repair: functions and mechanisms. / Chem Rev 2006, 106:302-23.
    4. Kunkel TA, Erie DA: DNA mismatch repair. / Annu Rev Plant Physiol Plant Mol Biol 2005, 74:681-10.
    5. Harrington JM, Kolodner RD: Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. / Mol Cell Biol 2007, 27:6546-554.
    6. Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R: hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. / Proc Natl Acad Sci U S A 1996, 93:13629-3634.
    7. Srivatsan A, Bowen N, Kolodner RD: Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. / J Biol Chem 2014, 289:9352-364.
    8. Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J: hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. / Curr Biol 1996, 6:1181-184.
    9. Umar A, Risinger JI, Glaab WE, Tindall KR, Barrett JC, Kunkel TA: Functional overlap in mismatch repair by human MSH3 and MSH6. / Genetics 1998, 148:1637-646.
    10. van Oers JM, Edwards Y, Chahwan R, Zhang W, Smith C, Pechuan X, Schaetzlein S, Jin B, Wang Y, Bergman A, Scharff MD, Edelmann W: The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair. / Oncogene 2013, 33:3939-946.
    11. Sugawara N, Paques F, Colaiácovo M, Haber JE: Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. / Proc Natl Acad Sci U S A 1997, 94:9214-219.
    12. Fink D, Aebi S, Howell SB: The role of DNA mismatch repair in drug resistance. / Clin Cancer Res 1998, 4:1-.
    13. Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, Balaguer F, Sempere L, Xicola RM, Bujanda L, Re?é JM, Clofent J, Bessa X, Morillas JD, Nicolás-Pérez D, Pons E, Payá A, Alenda C, Gastrointestinal Oncology Group of the Spanish Gastroenterological Association: The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. / Eur J Cancer 2009, 45:365-73.
    14. Mao G, Yuan F, Absher K, Jennings CD, Howard DS, Jordan CT, Gu L: Preferential loss of mismatch repair function in refractory and relapsed acute myeloid leukemia: potential contribution to AML progression. / Cell Res 2008, 18:281-89.
    15. Offman J, Opelz G, Doehler B, Cummins D, Halil O, Banner NR, Burke MM, Sullivan D, Macpherson P, Karran P: Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. / Blood 2004, 104:822-28.
    16. Bignami M, Casorelli I, Karran P: Mismatch repair and response to DNA-damaging antitumour therapies. / Eur J Cancer 2003, 39:2142-149.
    17. Kaelin WG Jr: The concept of synthetic lethality in the context of anti-cancer therapy. / Nat Rev Cancer 2005, 5:689-98.
    18. Chan DA, Giaccia AJ: Harnessing synthetic lethal interactions in anticancer drug discovery. / Nat Rev Drug Discov 2011, 10:351-64.
    19. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. / Nature 2005, 434:917-21.
    20. Hay T, Matthews JR, Pietzka L, Lau A, Cranston A, Nygren AO, Douglas-Jones A, Smith GC, Martin NM, O’Connor M, Clarke AR: Poly(ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. / Cancer Res 2009, 69:3850-855.
    21. Roguev A, Talbot D, Negri GL, Shales M, Cagney G, Bandyopadhyay S, Panning B, Krogan NJ: Quantitative genetic-interaction mapping in mammalian cells. / Nat Methods 2013, 10:432-37.
    22. Iorns E, Lord CJ, Turner N, Ashworth A: Utilizing RNA interference to enhance cancer drug discovery. / Nat Rev Drug Discov 2007, 6:556-68.
    23. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. / Cell 2009, 137:835-48.
    24. Kim YW, Liu T, Koul D, Tiao N, Feroze AH, Wang J, Powis G, Yung WK: Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM. / Neuro Oncol 2011, 13:367-75.
    25. Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, Oka S, Kay E, Lord CJ, Ashworth A: DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. / Cancer Cell 2010, 17:235-48.
    26. Martin SA, McCarthy A, Barber LJ, Burgess DJ, Parry S, Lord CJ, Ashworth A: Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. / EMBO Mol Med 2009, 1:323-37.
    27. Loeb LA, Monnat RJ Jr: DNA polymerases and human disease. / Nat Rev Genet 2008, 9:594-04.
    28. Cabelof DC, Ikeno Y, Nyska A, Busuttil RA, Anyangwe N, Vijg J, Matherly LH, Tucker JD, Wilson SH, Richardson A, Heydari AR: Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. / Cancer Res 2006, 66:7460-465.
    29. Boone C, Bussey H, Andrews BJ: Exploring genetic interactions and networks with yeast. / Nat Rev Genet 2007, 8:437-49.
    30. McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM: Systematic discovery of nonobvious human disease models through orthologous phenotypes. / Proc Natl Acad Sci U S A 2010, 107:6544-549.
    31. Sipiczki M: Where does fission yeast sit on the tree of life? / Genome Biol 2000, 1:reviews1011.1–reviews1011.4.
    32. O’Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J, Stanyon R, Copeland NJ, Jenkins NA, Womack JE, Graves JA: The promise of comparative genomics in mammals. / Science 1999, 286:458-81.
    33. Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C: Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. / Proc Natl Acad Sci U S A 2008, 105:16653-6658.
    34. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ: Conservation and rewiring of functional modules revealed by an epistasis map (E-MAP) in fission yeast. / Science 2008, 322:405-10.
    35. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, / et al: Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe . / Nat Biotechnol 2010, 28:617-23.
    36. Shevchenko A, Roguev A, Schaft D, Buchanan L, Habermann B, Sakalar C, Thomas H, Krogan NJ, Shevchenko A, Stewart AF: Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. / Genome Biol 2008, 9:R167.
    37. Bao Y, Shen X: SnapShot: chromatin remodeling complexes. / Cell 2007, 129:632.
    38. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, / et al: Global mapping of the yeast genetic interaction network. / Science 2004, 303:808-13.
    39. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, / et al: Functional profiling of the Saccharomyces cerevisiae genome. / Nature 2002, 418:387-91.
    40. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, / et al: The genetic landscape of a cell. / Science 2010, 327:425-31.
    41. Frost A, Elgort MG, Brandman O, Ives C, Collins SR, Miller-Vedam L, Weibezahn J, Hein MY, Poser I, Mann M, Hyman AA, Weissman JS: Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. / Cell 2012, 149:1339-352.
    42. Ryan CJ, Roguev A, Patrick K, Xu J, Jahari H, Tong Z, Beltrao P, Shales M, Qu H, Collins SR, Kliegman JI, Jiang L, Kuo D, Tosti E, Kim HS, Edelmann W, Keogh MC, Greene D, Tang C, Cunningham P, Shokat KM, Cagney G, Svensson JP, Guthrie C, Espenshade PJ, Ideker T, Krogan NJ: Hierarchical modularity and the evolution of genetic interactomes across species. / Mol Cell 2012, 46:691-04.
    43. Modrich PL: Mechanisms in eukaryotic mismatch repair. / J Biol Chem 2006, 281:30305-0309.
    44. Keogh M-C, Cho E-J, Podolny V, Buratowski S: Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. / Mol Cell Biol 2002, 22:1288-297.
    45. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter-substitution cassettes. / Yeast 2004, 21:947-62.
    46. Kim H-S, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, Treyer A, Carpenter LR, Bennett CS, Emili A, Greenblatt JF, Hardwick KG, Krogan NJ, B?hler J, Keogh MC: An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe . / Nat Struct Mol Biol 2009, 16:1286-293.
    47. Roguev A, Wiren M, Weissman JS, Krogan NJ: High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe . / Nat Methods 2007, 4:861-66.
    48. Li GM: Mechanisms and functions of DNA mismatch repair. / Cell Res 2008, 18:85-8.
    49. Watanabe Y, Haugen-Strano A, Umar A, Yamada K, Hemmi H, Kikuchi Y, Takano S, Shibata Y, Barrett JC, Kunkel TA, Koi M: Complementation of an hMSH2 defect in human colorectal carcinoma cells by human chromosome 2 transfer. / Mol Carcinog 2000, 29:37-9.
    50. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J: An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. / Nature 2006, 429:89-4.
    51. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M, Lia M, Kneitz B, Avdievich E, Fan K, Wong E, Crouse G, Kunkel T, Lipkin M, Kolodner RD, Kucherlapati R: The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. / Cancer Res 2000, 60:803-07.
    52. Kim TM, Laird PW, Park PJ: The landscape of microsatellite instability in colorectal and endometrial cancer genomes. / Cell 2013, 155:858-68.
    53. Plaschke J, Kruger S, Jeske B, Theissig F, Kreuz FR, Pistorius S, Saeger HD, Iaccarino I, Marra G, Schackert HK: Loss of MSH3 protein expression is frequent in MLH1-deficient colorectal cancer and is associated with disease progression. / Cancer Res 2004, 64:864-70.
    54. Poulogiannis G, Frayling IM, Arends MJ: DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. / Histopathology 2010, 56:167-79.
    55. Marischky GT, Foliso N, Kane MF, Kolodner R: Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2 -dependent mismatch repair. / Genes Dev 1996, 10:407-20.
    56. Mansour AA, Tornier C, Lehmann E, Darmon M, Fleck O: Control of GT repeat stability in Schizosaccharomyces pombe by mismatch repair factors. / Genetics 2001, 158:77-5.
    57. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. / Cell 1993, 75:1027-038.
    58. Rudolph C, Kunz C, Parisi S, Lehmann E, Hartsuiker E, Fartmann B, Kramer W, Kohli J, Fleck O: The msh2 gene of Schizosaccharomyces pombe is involved in mismatch repair, mating-type switching, and meiotic chromosome organization. / Mol Cell Biol 1999, 19:241-50.
    59. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. / Nature 2007, 446:806-10.
    60. Schuldiner M, Collins SR, Weissman JS, Krogan NJ: Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. / Methods 2006, 40:344-52.
    61. Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guénolé A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T: Rewiring of genetic networks in response to DNA damage. / Science 2010, 330:1385-389.
    62. Raji H, Hartsuiker E: Double-strand break repair and homologous recombination in Schizosaccharomyces pombe . / Yeast 2006, 23:963-76.
    63. Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC: The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. / Mol Cell 2008, 32:118-28.
    64. Saparbaev M, Prakash L, Prakash S: Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae . / Genetics 1996, 142:727-36.
    65. Nicholson A, Fabbri RM, Reeves JW, Crouse GF: The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae . / Genetics 2006, 173:647-59.
    66. Guénolé A, Srivas R, Vreeken K, Wang ZZ, Wang S, Krogan NJ, Ideker T, van Attikum H: Dissection of DNA damage responses using multiconditional genetic interaction maps. / Mol Cell 2013, 49:346-58.
    67. Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, Fairclough S, Iverson C, Wedaman KP, Powers T: TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae . / J Biol Chem 2004, 279:14752-4762.
    68. Toda T, Cameron S, Sass P, Wigler M: SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. / Genes Dev 1988, 2:517-27.
    69. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT: The yeast nuclear pore complex: composition, architecture, and transport mechanism. / J Cell Biol 2000, 148:635-51.
    70. Saravanan M, Wuerges J, Bose D, McCormack EA, Cook NJ, Zhang X, Wigley DB: Interactions between the nucleosome histone core and Arp8 in the INO80 chromatin remodeling complex. / Proc Natl Acad Sci U S A 2012, 109:20883-0888.
    71. Harnpicharnchai P, Jakovljevic J, Horsey E, Miles T, Roman J, Rout M, Meagher D, Imai B, Guo Y, Brame CJ, Shabanowitz J, Hunt DF, Woolford JL Jr: Composition and functional characterization of yeast 66S ribosome assembly intermediates. / Mol Cell 2001, 8:505-15.
    72. Vilar E, Mukherjee B, Kuick R, Raskin L, Misek DE, Taylor JM, Giordano TJ, Hanash SM, Fearon ER, Rennert G, Gruber SB: Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. / Clin Cancer Res 2009, 15:2829-839.
    73. Palancade B, Liu X, Garcia-Rubio M, Aguilera A, Zhao X, Doye V: Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. / Mol Biol Cell 2007, 18:2912-923.
    74. Parsons AB, Brost RL, Ding H, Li Z, Zhang CL, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C: Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. / Nat Biotechnol 2004, 22:62-9.
    75. Li SJ, Hochstrasser M: The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. / Mol Cell Biol 2000, 20:2367-377.
    76. Bylebyl GR, Belichenko I, Johnson ES: The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. / J Biol Chem 2003, 278:44113-4120.
    77. Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ: Ubiquitin-dependent proteolytic control of SUMO conjugates. / J Biol Chem 2007, 282:34167-4175.
    78. Dziadkowiec D, Petters E, Dyjankiewicz A, Karpiński P, Garcia V, Watson A, Carr AM: The role of novel genes rrp1(+) and rrp2(+) in the repair of DNA damage in Schizosaccharomyces pombe . / DNA Repair (Amst) 2009, 8:627-36.
    79. Jackson SP, Durocher D: Regulation of DNA Damage Responses by Ubiquitin and SUMO. / Mol Cell 2013, 49:795-07.
    80. Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. / Mol Cell 2012, 45:422-32.
    81. Nagai S, Davoodi N, Gasser SM: Nuclear organization in genome stability: SUMO connections. / Cell Res 2011, 21:474-85.
    82. Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA: The role of Schizosaccharomyces pombe SUMO ligases in genome stability. / Biochem Soc Trans 2007, 35:1379-384.
    83. Stephan AK, Kliszczak M, Morrison CG: The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. / FEBS Lett 2011, 585:2907-913.
    84. Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O: Sumo-dependent substrate targeting of the SUMO protease Ulp1. / BMC Biol 2011, 9:74.
    85. Soustelle C, Vernis L, Fréon K, Reynaud-Angelin A, Chanet R, Fabre F, Heude M: A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability. / Mol Cell Biol 2004, 24:5130-143.
    86. Bekes M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS: The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. / J Biol Chem 2011, 286:10238-0247.
    87. Felberbaum R, Hochstrasser M: Ulp2 and the DNA damage response: desumoylation enables safe passage through mitosis. / Cell Cycle 2008, 7:52-6.
    88. Lee MT, Bakir AA, Nguyen KN, Bachant J: The SUMO isopeptidase Ulp2p is required to prevent recombination-induced chromosome segregation lethality following DNA replication stress. / PLoS Genet 2011, 7:e1001355.
    89. McDonald WH, Pavlova Y, Yates JR 3rd, Boddy MN: Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. / J Biol Chem 2003, 278:45460-5467.
    90. Mukhopadhyay D, Dasso M: Modification in reverse: the SUMO proteases. / Trends Biochem Sci 2007, 32:286-95.
    91. Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD: Distribution and paralogue specificity of mammalian deSUMOylating enzymes. / Biochem J 2010, 430:335-44.
    92. Alegre KO, Reverter D: Swapping small ubiquitin-like modifier (SUMO) isoform specificity of SUMO proteases SENP6 and SENP7. / J Biol Chem 2011, 286:36142-6151.
    93. Dou H, Huang C, Singh M, Carpenter PB, Yeh ET: Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. / Mol Cell 2010, 39:333-45.
    94. Maison C, Romeo K, Bailly D, Dubarry M, Quivy JP, Almouzni G: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. / Nat Struct Mol Biol 2012, 19:458-60.
    95. Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM, Yeh ET: Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. / Proc Natl Acad Sci U S A 2012, 109:17466-7471.
    96. Garvin AJ, Densham RM, Blair-Reid SA, Pratt KM, Stone HR, Weekes D, Lawrence KJ, Morris JR: The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. / EMBO Rep 2013, 14:975-83.
    97. Rogakou EP, Pilch DR, Orr AH VSI, Bonner WP: DNA double-strand breaks induce H2AX phosphorylation on Serine 139. / J Biol Chem 1998, 273:5858-868.
    98. Takahashi M, Koi M, Balaguer F, Boland CR, Goel A: MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. / J Biol Chem 2011, 286:12157-2165.
    99. Saffhill R, Ockey CH: Strand breaks arising from the repair of the 5-bromodeoxyuridine-substituted template and methyl methanesulphonate-induced lesions can explain the formation of sister chromatid exchanges. / Chromosoma 1985, 92:218-24.
    100. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG: PARP inhibition: PARP1 and beyond. / Nat Rev Cancer 2010, 10:293-01.
    101. Zaremba T, Curtin NJ: PARP inhibitor development for systemic cancer targeting. / Anticancer Agents Med Chem 2007, 7:515-23.
    102. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. / Nature 2005, 434:913-17.
    103. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. / Lancet 2010, 376:235-44.
    104. Ang JE, Gourley C, Powell CB, High H, Shapira-Frommer R, Castonguay V, De Greve J, Atkinson T, Yap TA, Sandhu S, Banerjee S, Chen LM, Friedlander ML, Kaufman B, Oza AM, Matulonis U, Barber LJ, Kozarewa I, Fenwick K, Assiotis I, Campbell J, Chen L, de Bono JS, Gore ME, Lord CJ, Ashworth A, Kaye SB: Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. / Clin Cancer Res 2013, 19:5485.
    105. Qian J, Luo Y, Gu X, Wang X: Inhibition of SENP6-induced radiosensitization of human hepatocellular carcinoma cells by blocking radiation-induced NF-κB activation. / Cancer Biother Radiopharm 2013, 28:196-00.
    106. Albrow VE, Ponder EL, Fasci D, Békés M, Deu E, Salvesen GS, Bogyo M: Development of small molecule inhibitors and probes of human SUMO deconjugating proteases. / Chem Biol 2011, 18:722-32.
  • 作者单位:Elena Tosti (1)
    Joseph A Katakowski (2)
    Sonja Schaetzlein (1)
    Hyun-Soo Kim (1)
    Colm J Ryan (3) (4) (5)
    Michael Shales (3)
    Assen Roguev (3)
    Nevan J Krogan (3) (4) (6)
    Deborah Palliser (2)
    Michael-Christopher Keogh (1)
    Winfried Edelmann (1)

    1. Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
    2. Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
    3. Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
    4. California Institute for Quantitative Biosciences, San Francisco, USA
    5. School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
    6. J. David Gladstone Institutes, San Francisco, USA
  • ISSN:1756-994X
文摘
Background The evolutionarily conserved DNA mismatch repair (MMR) system corrects base-substitution and insertion-deletion mutations generated during erroneous replication. The mutation or inactivation of many MMR factors strongly predisposes to cancer, where the resulting tumors often display resistance to standard chemotherapeutics. A new direction to develop targeted therapies is the harnessing of synthetic genetic interactions, where the simultaneous loss of two otherwise non-essential factors leads to reduced cell fitness or death. High-throughput screening in human cells to directly identify such interactors for disease-relevant genes is now widespread, but often requires extensive case-by-case optimization. Here we asked if conserved genetic interactors (CGIs) with MMR genes from two evolutionary distant yeast species (Saccharomyces cerevisiae and Schizosaccharomyzes pombe) can predict orthologous genetic relationships in higher eukaryotes. Methods High-throughput screening was used to identify genetic interaction profiles for the MutSα and MutSβ heterodimer subunits (msh2Δ, msh3Δ, msh6Δ) of fission yeast. Selected negative interactors with MutSβ (msh2Δ/msh3Δ) were directly analyzed in budding yeast, and the CGI with SUMO-protease Ulp2 further examined after RNA interference/drug treatment in MSH2-deficient and -proficient human cells. Results This study identified distinct genetic profiles for MutSα and MutSβ, and supports a role for the latter in recombinatorial DNA repair. Approximately 28% of orthologous genetic interactions with msh2Δ/msh3Δ are conserved in both yeasts, a degree consistent with global trends across these species. Further, the CGI between budding/fission yeast msh2 and SUMO-protease Ulp2 is maintained in human cells (MSH2/SENP6), and enhanced by Olaparib, a PARP inhibitor that induces the accumulation of single-strand DNA breaks. This identifies SENP6 as a promising new target for the treatment of MMR-deficient cancers. Conclusion Our findings demonstrate the utility of employing evolutionary distance in tractable lower eukaryotes to predict orthologous genetic relationships in higher eukaryotes. Moreover, we provide novel insights into the genome maintenance functions of a critical DNA repair complex and propose a promising targeted treatment for MMR deficient tumors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700