Research progress in the key device and technology for fiber optic sensor network
详细信息    查看全文
  • 作者:Deming Liu ; Qizhen Sun ; Ping Lu ; Li Xia ; Chaotan Sima
  • 关键词:Fiber optic sensor network ; fiber optic sensor laser ; intelligent management ; fiber optic gas sensing ; fiber optic acoustic sensing ; fiber optics strain sensing
  • 刊名:Photonic Sensors
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:6
  • 期:1
  • 页码:1-25
  • 全文大小:4,082 KB
  • 参考文献:[1]S. Huang, W. Lin, and M. Chen, “Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors,” Optics Letters, 1995, 20(11): 1244–1246.ADS CrossRef
    [2]D. T. Jenstrom and C. L. Chen, “A fiber optic microbend tactile sensor array,” Sensors and Actuators, 1989, 20(3): 239–248.CrossRef
    [3]G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sensors and Actuators B: Chemical, 1998, 51(98): 227–232.CrossRef
    [4]C. Zhou, Y. Rao, and J. Jiang, “A coarse wavelength-division-multiplexed extrinsic fiber Fabry-Perot sensor system,” in Proc. SPIE, vol. 5634, pp. 219–224, 2005.ADS CrossRef
    [5]Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technology Letters, 2007, 19(8): 622–624.ADS CrossRef
    [6]B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A novel fiber-optic sensor array based on the Sagnac interferometer,” Journal of Lightwave Technology, 1999, 17(11): 2316–2326.ADS CrossRef
    [7]H. Fu, D. Chen, and Z. Cai, “Fiber sensor systems based on fiber laser and microwave photonic technologies,” Sensors, 2012, 12(5): 5395–5419.CrossRef
    [8]R. A. Perez-Herrera, M. Fernandez-Vallejo, and M. Lopez-Amo, “Robust fiber-optic sensor networks,” Photonic Sensors, 2012, 2(4): 366–380.ADS CrossRef
    [9]G. R. Kirikera, O. Balogun, and S. Krishnaswamy, “Adaptive fiber Bragg grating sensor network for structural health monitoring: applications to impact monitoring,” Structure Health Monitoring, 2011, 10(1): 5–16.CrossRef
    [10]C. Chan, W. Jin, H. L. Ho, and M. Suleyman Demokan, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 741–749.CrossRef
    [11]D. Cooper, T. Coroy, and P. Smith, “Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays,” Applied Optics, 2001, 40(16): 2643–2654.ADS CrossRef
    [12]Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Optics and Lasers in Engineering, 2009, 47(10): 1028–1033.ADS CrossRef
    [13]M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. M. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Optics Communications, 2012, 285(13): 3082–3087.ADS CrossRef
    [14]C. Hu, H. Wen, and W. Bai, “A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings,” Journal of Lightwave Technology, 2014, 32(7): 1406–1411.ADS CrossRef
    [15]G. D. Lloyd, L. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber Bragg grating sensor interrogator,” IEEE Photonics Technology Letters, 2004, 16(10): 2323–2325.ADS CrossRef
    [16]Y. Yu, L. Lui, H. Y. Tam, and W. Chung, “Fiber-laser based wavelength division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, 2001, 13(7): 702–704.ADS CrossRef
    [17]K. Takada, “High-resolution OFDR with incorporated fiber-optic frequency encoder,” IEEE Photonics Technology Letters, 1992, 4(9): 1069–1072.ADS CrossRef
    [18]B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, et al., “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” in Proc. SPIE, vol. 4332, pp. 133–142, 2001.ADS CrossRef
    [19]J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, Y. K. Byoung, and H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” Journal of Lightwave Technology, 1985, 3(5): 1062–1072.ADS CrossRef
    [20]Y. Rao, K. Kalli, G. Brady, D, J, Webb, D. A. Jackson, L. Zhang, et al., “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electronics Letters, 1995, 31(12): 1009–1010.CrossRef
    [21]Y. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Strain sensing of modern composite materials with a spatial/wavelength-division multiplexed fiber grating network,” Optics Letters, 1996, 21(9): 683–685.ADS CrossRef
    [22]Y. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous spatial, time and wavelength division multiplexed in-fibre grating sensing network,” Optics Communications, 1996, 125(1): 53–58.ADS CrossRef
    [23]Q. Sun, X. Li, M. Zhang, Q. Liu, H. Liu, and D. Liu, “High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications,” in Proc. SPIE, vol. 9044, pp. 90440L-1–10, 2013.
    [24]X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM based fiber-optic sensor network for perimeter intrusion detection,” Journal of Lightwave Technology, 2012, 30(8): 1113–1120.ADS CrossRef
    [25]X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, et al., “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Optics Express, 2012, 20(11): 12076–12084.ADS CrossRef
    [26]Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Optics Letters, 2008, 33(4): 324–326.ADS CrossRef
    [27]Y. Song, L. Zhan, S. Hu, Q. Ye, and Y. Xia, “Tunable multiwavelengthBrillouin-erbium fiber laser with a polarization-maintaining fiber sagnac loop filter,” IEEE Photonics Technology Letters, 2004, 16(9): 2015–2017.ADS CrossRef
    [28]H. Dong, G. Zhu, Q. Wang, H. Sun, N. K. Dutta, J. Jaques, et al., “Multiwavelength fiber ring laser source based on a delayed interferometer,” IEEE Photonics Technology Letters, 2005, 17(2): 303–305.ADS CrossRef
    [29]Y. Han, X. Dong, C. Kim, M. Jeong, and J. Lee, “Flexible all fiber Fabry-Pérot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser,” Optics Express, 2007, 15(6): 2921–2926.ADS CrossRef
    [30]Y. G. Han, C. S. Kim, J. U. Kang, and U. C. Peak, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technology Letters, 2003, 15(3): 383–385.ADS CrossRef
    [31]J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technology Letters, 2014, 16(4): 1026–1028.ADS CrossRef
    [32]X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, et al., “Demonstration of microfiber knot laser,” Applied Physics Letters, 2006, 89(14): 143513.ADS CrossRef
    [33]W. Fan, J. Gan, Z. Zhang, X. Wei, S. Xu, and Z. Yang, “Narrow linewidth single frequency microfiber laser,” Optics Letters, 2012, 37(20): 4323–4325.ADS CrossRef
    [34]A. Sulaiman, S. W. Harun, H. Arof, and H. Ahmad, “Compact and tunable erbium-doped fiber laser with microfiber Mach-Zehnder interferometer,” IEEE Journal of Quantum Electronics, 2012, 48(9): 1165–1168.ADS CrossRef
    [35]W. Jia, Q. Sun, X. Sun, J. Wo, Z. Xu, D. Liu, et al., “Wideband microfiber Fabry-Perot filter and its application to multiwavelength fiber ring laser,” IEEE Photonics Technology Letters, 2014, 26(10), 961–964.ADS CrossRef
    [36]W. Jia, Q. Sun, Z. Xu, X. Sun, and D. Liu, “Channel-spacing tunable multiwavelength erbium-doped fiber laser based on a microfiber Fabry-Perot filter,” in 2014 Conference on Lasers and Electro-Optics, San Jose, pp. 1–2, 2014.
    [37]J. Geng and S. Jiang, “Fiber lasers: the 2μm market heats up,” Optics and Photonics News, 2014, 25(7): 4–41.CrossRef
    [38]F. McALeavey, B. D. MacCraith, J. O'Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber & Integrated Optics, 1997, 16(4): 355–368.CrossRef
    [39]Q. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technology Letters, 2002, 14(5): 612–614.ADS CrossRef
    [40]S. Liu, F. Yan, T. Feng, B. Wu, Z. Dong,k and G. K. Chang, “Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Applied Optics, 2014, 53(24): 5522–5526.ADS CrossRef
    [41]X. Ma, S. Luo, and D. Chen, “Switchable and tunable thulium-doped fiber laser incorporating a Sagnac loop mirror,” Applied Optics, 2014, 53(20): 4382–4385.ADS CrossRef
    [42]S. Liu, F. Yan, W. Peng, T. Feng Z. Dong, and G. Chang, “Tunable dual-wavelength thulium-doped fiber laser by employing a HB-FBG,” IEEE Photonics Technology Letters, 2014, 26(18): 1809–1812.ADS CrossRef
    [43]W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, et al., “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Applied Optics, 2013, 52(19): 4601–4607.ADS CrossRef
    [44]M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photonics Technology Letters, 2005, 17(3): 552–554.ADS CrossRef
    [45]S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Optical Engineering, 2013, 52(8): 086105–086111.ADS CrossRef
    [46]W. Yang, P. Lu, S. Wang, D. Liu, and J. Zhang, “2-μm switchable, tunable and power-controllable dual-wavelength fiber laser based on parallel cavities using 3×3 coupler,” Applied Physics B, 2015, 120(2): 349–354.CrossRef
    [47]M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Optics Letters. 1998, 23(2): 138–140.ADS CrossRef
    [48]M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, et al., “Mode-locked 1.93 mm thulium fiber laser with a carbon nanotube absorber,” Optics Letters, 2008, 33(12): 1336–1338.ADS CrossRef
    [49]F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.ADS CrossRef
    [50]X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Physical Review A, 2011, 84(5): 1688–1690.
    [51]Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Research, 2010, 3(6): 404–411.CrossRef
    [52]K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Optics Express, 2008, 16(15): 11453–11458.ADS CrossRef
    [53]L. R. Chen, G. E. Town, P. Y. Cortès, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength, actively mode-locked fibre laser with 0.7 nm wavelength spacing,” Electronics Letters, 2000, 36(23): 1921–1923.CrossRef
    [54]S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technology Letters, 2006, 18(13): 1451–1453.ADS CrossRef
    [55]D. Pudo and L. R. Chen, “Actively mode locked, quadruple-wavelength fibre laser with pump-controlled wavelength switching,” Electronics Letters, 2003, 39(3): 272–274.CrossRef
    [56]Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, et al., “Tunable and switchable dual-wavelength Tm-doped modelocked fiber laser by nonlinear polarization evolution,” Optics Express, 2015, 23(4): 4369–4376.ADS CrossRef
    [57]J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 and 1944 nm in fiber laser based on common graphene saturable absorber,” Optics Express, 2013, 21(16): 18994–19002.ADS CrossRef
    [58]Y. Luo, Q. Sun, Z. Wu, Z. Xu, S. Fu, L. Zhao, et al., “258-MHz group velocity locked vector dissipative solitons in a dispersion-managed short-cavity fiber laser,” in Optoelectronic Global Conference, China, pp. 29–31, 2015.
    [59]Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638.ADS CrossRef
    [60]A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” Journal of Lightwave Technology, 2012, 30(21): 3420–3426.ADS MathSciNet CrossRef
    [61]L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Optics Letters, 2013, 38(19): 3762–3764.ADS CrossRef
    [62]C. Jáuregui, J. M. López-Higuera, A. Cobo, O. M. Conde, and J. Zubía, “Multiparameter sensor based on a chaotic fiber-ring resonator,” Journal of the Optical Society of America B, 2006, 23(10): 2024–2031.CrossRef
    [63]X. Zhang and L. Yang, “A fiber Bragg grating quasi-distributed sensing network with a wavelength-tunable chaotic fiber laser,” Systems Science and Control Engineering, 2014, 2(1): 268–274.CrossRef
    [64]Z. Ma, M. Zhang, Y. Liu, X. Bao, H. Liu, Y. Zhang, et al., “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics Journal, 2015, 7(4): 1–7.CrossRef
    [65]L. Xia, C. Yu, Y. Ran, J. Xu, and W. Li, “Static/dynamic strain sensing applications by monitoring the correlation peak from optical wideband chaos,” Optics Express, 2015, 23(20): 26113–26123.ADS CrossRef
    [66]Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, et al., “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Optics Express, 2015, 23(3): 2416–2423.ADS CrossRef
    [67]C. G. Askins, M. A. Putnam, and E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Proc. SPIE, vol. 2444, pp. 257–266, 1995.ADS CrossRef
    [68]A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.ADS CrossRef
    [69]A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Optics Letters, 1993, 18(16): 1370–1372.ADS CrossRef
    [70]G. Yang, J. H. Guo, G. L. Xu, L. D. Lv, G. J. Tu, and L. Xia, “A novel fiber Bragg grating wavelength demodulation system based on F-P etalon,” in Proc. SPIE, vol. 9270, pp. 92700V-1‒92700V-7, 2014.
    [71]D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technology Letters, 2002, 14(3): 355–357.ADS CrossRef
    [72]Q. Sun, J. Cheng, F. Ai, X. Li, D. Liu, and L. Zhang, “High speed and high resolution demodulation system for hybrid WDM/FDM based fiber microstructure sensor network by using Fabry-Perot filter,” in 2015 Conference on Lasers and Electro-Optics, San Jose, pp. 1–2, 2015.CrossRef
    [73]F. Ai, Q. Sun, J. Cheng, and D. Liu, “High resolution demodulation platform for large capacity hybrid WDM/FDM microstructures sensing system assisted by tunable FP filter,” in Progress in Electromagnetics Research Symposium, Cambridge, pp. 1200–1203, 2015.
    [74]M. Legre, R. Thew, and H. Zbinden, “High resolution Optical Time Domain Reflectometer based on 1.55 μm up-conversion photon-counting module,” Optics Express, 2007, 15(13): 8237–8242.ADS CrossRef
    [75]J. H. Park, J. S. Baik, and C. H. Lee, “Fault-detection technique in a WDM-PON,” Optics Express, 2007, 15(4): 1461–1466.ADS CrossRef
    [76]Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, et al., “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Optics Express, 2015, 23(3): 2416–2423.ADS CrossRef
    [77]J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science & Technology, 2012, 24(1): 111–123.
    [78]H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors, 2010, 10(3): 1716–1742.CrossRef
    [79]X. Sun, Q. Sun, S. Zhu, Y. Yuan, Z. Huang, X. Liu, et al., “High sensitive ammonia gas sensor based on graphene coated microfiber,” in PIERS Proceedings, Prague, pp. 1196–1199, 2015.
    [80]Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Optics Letters, 2006, 31(16): 2405–2407, 2006.ADS CrossRef
    [81]W. Jin, H. Ho, Y. Cao, J. Ju, and L. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Optical Fiber Technology, 2013, 19(6): 741–759.ADS CrossRef
    [82]J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied Optics, 2008, 47(15): 2790–2797.ADS CrossRef
    [83]J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, et al., “Towards practical gas sensing with micro-structured fiber,” Measurement Science and Technology, 2009, 20(7): 190–190.CrossRef
    [84]G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fiber optic multi-point sensor for gas detection,” Sensors and Actuators B: Chemical, 1998, 51(1): 227–232.CrossRef
    [85]W. Jin, “Performance analysis of a time-division-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feedback laser,” Applied optics, 1999, 38(25): 5290–5297.ADS CrossRef
    [86]G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy,” Journal of Lightwave Technology, 2004, 22(3): 813–819.ADS CrossRef
    [87]M. Završnik and G. Stewart, “Theoretical analysis of a quasi-distributed optical sensor system using FMCW for application to trace gas measurement,” Sensors and Actuators B: Chemical, 2000, 71(1): 31–35.CrossRef
    [88]F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing system based on frequency-shifted interferometry,” Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008, San Diego, United States, pp. 1–3, 2008.
    [89]W. Zhang, Y. Lu, L. Duan, Z. Zhao, W. Shi, and J. Yao, “Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter,” Optics Express, 2014, 22(20): 24545–24550.ADS CrossRef
    [90]OptoSniff/Optosci, http://​wwwoptosniffcom/​.​

[91]C. Caliendo, “Latest trends in acoustic sensing,” Sensors, 2014, 14(4): 5781–5784.CrossRef
[92]C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D: Applied Physics, 2004, 37(18): R197–R216.ADS CrossRef
[93]J. G. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198–208.ADS CrossRef
[94]S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” in Proc. SPIE, vol. 5855, pp. 627–630, 2005.ADS CrossRef
[95]R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Measurement Science and Technology, 2004, 15(8): 1490–1495.ADS CrossRef
[96]B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, et al., “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Optics Letters, 2012, 37(22): 4768–4770.ADS CrossRef
[97]J. P. Mutschlecner and R. W. Whitaker, “Infrasound from earthquakes,” Journal of Geophysical Research: Atmospheres, 2005, 110(110): 372–384.
[98]S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil,” IEEE Sensors Journal, 2014, 14(7): 2293–2298.CrossRef
[99]S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Intensity demodulation-based acoustic sensor using dual fiber Bragg gratings and a titanium film,” Journal of Modern Optics, 2014, 61(12): 1033–1038.ADS CrossRef
[100]S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” Journal of Modern Optics, 2013, 60(21): 1892–1897.ADS CrossRef
[101]Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, et al., “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, 2015, 7(2): 1–7.CrossRef
  • 作者单位:Deming Liu (1)
    Qizhen Sun (1)
    Ping Lu (1)
    Li Xia (1)
    Chaotan Sima (1)

    1. School of Optical and Electronic Information, Huazhong University of Science and Technology; National Engineering Laboratory for Next Generation Internet Access System, Wuhan, 430074, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Chinese Library of Science
    Laser Technology and Physics and Photonics
    Microwaves, RF and Optical Engineering
    Measurement Science and Instrumentation
    Optics, Optoelectronics, Plasmonics and Optical Devices
  • 出版者:University of Electronic Science and Technology of China, co-published with Springer
  • ISSN:2190-7439
  • 文摘
    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network. Keywords Fiber optic sensor network fiber optic sensor laser intelligent management fiber optic gas sensing fiber optic acoustic sensing fiber optics strain sensing

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700