ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance
详细信息    查看全文
  • 作者:Oumaya Bouchabke-Coussa (1) (6)
    Marie-Luce Quashie (2) (6)
    Jose Seoane-Redondo (3) (6)
    Marie-Noelle Fortabat (6)
    Carine Gery (6)
    Agnes Yu (4) (6)
    Daphné Linderme (5) (6)
    Jacques Trouverie (6)
    Fabienne Granier (6)
    Evelyne Téoulé (6)
    Mylène Durand-Tardif (6)
  • 刊名:BMC Plant Biology
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:8
  • 期:1
  • 全文大小:6055KB
  • 参考文献:1. Chinnusamy V, Schumaker K, Zhu JK: Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. / J Exp Bot 2004,55(395):225-36. CrossRef
    2. Boyer JS: Plant Productivity and Environment. / Science 1982,218(4571):443-48. CrossRef
    3. Bruce WB, Edmeades GO, Barker TC: Molecular and physiological approaches to maize improvement for drought tolerance. / J Exp Bot 2002,53(366):13-5. CrossRef
    4. Chaves MM, Maroco JP, Pereira JS: Understanding plant responses to drought -from genes to the whole plant. / Functional Plant Biology 2003,30(3):239-64. CrossRef
    5. Bray EA: Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. / J Exp Bot 2004,55(407):2331-341. CrossRef
    6. Bartels D, Sunkar R: Drought and salt tolerance in plants. / Critical Reviews in Plant Sciences 2005,24(1):23-8. CrossRef
    7. Vinocur B, Altman A: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. / Curr Opin Biotechnol 2005,16(2):123-32. CrossRef
    8. Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. / J Exp Bot 2007,58(2):221-27. CrossRef
    9. Passioura JB: Soil conditions and plant growth'. / Plant Cell Environ 2002,25(2):311-18. CrossRef
    10. Morgan JM: Osmoregulation and water stress in higher plants. / Annual review of plant physiology and plant molecular biology 1984, 35:299-19. CrossRef
    11. Gechev TS, van Breusegem F, Stone JM, Denev I, Laloi C: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. / Bioessays 2006,28(11):1091-101. CrossRef
    12. Thomashow MF: Role of cold-responsive genes in plant freezing tolerance. / Plant Physiol 1998,118(1):1-. CrossRef
    13. Zhu JK: Salt and drought stress signal transduction in plants. / Annu Rev Plant Biol 2002, 53:247-73. CrossRef
    14. Kacperska A: Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? / Physiologia Plantarum 2004, 122:159-68. CrossRef
    15. Sreenivasulu N, Sopory SK, Kavi Kishor PB: Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. / Gene 2007,388(1-):1-3. CrossRef
    16. Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L: Diverse signals converge at MAPK cascades in plant. / Plant Physiol Biochem 2006,44(5-):274-83. CrossRef
    17. Knight H, Trewavas AJ, Knight MR: Calcium signalling in Arabidopsis thaliana responding to drought and salinity. / Plant J 1997,12(5):1067-078. CrossRef
    18. Yamaguchi-Shinozaki K, Shinozaki K: Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. / Trends in Plant Science 2005,10(2):88-4. CrossRef
    19. Agarwal PK, Agarwal P, Reddy MK, Sopory SK: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. / Plant Cell Reports 2006,25(12):1263-274. CrossRef
    20. Suzuki N, Mittler R: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. / Physiologia Plantarum 2006,126(1):45-1. CrossRef
    21. Kwak JM, Nguyen V, Schroeder JI: The role of reactive oxygen species in hormonal responses. / Plant Physiol 2006,141(2):323-29. CrossRef
    22. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. / Curr Opin Biotechnol 2006,17(2):113-22.
    23. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, / et al.: Plant nuclear factor Y(NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. / Proc Natl Acad Sci U S A 2007,104(42):16450-6455. CrossRef
    24. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. / Proc Natl Acad Sci USA 2007,104(39):15270-5275. CrossRef
    25. Zhang JZ, Creelman RA, Zhu JK: From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. / Plant Physiol 2004,135(2):615-21. CrossRef
    26. Zhang HX, Hodson JN, Williams JP, Blumwald E: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. / Proc Natl Acad Sci USA 2001,98(22):12832-2836. CrossRef
    27. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. / Plant Physiol 2002,129(3):1086-094. CrossRef
    28. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, / et al.: Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. / Proc Natl Acad Sci USA 2007,104(42):16450-6455. CrossRef
    29. Rouster J, Aubourg S, Simon M, Pelletier G, Sajot N, Lessard P, Géry C, Téoulé E, Bouchabke O, Durand-Tardif M, / et al.: Functional analysis of cereal orphan genes via the use of Arabidopsis mutants. / Plant GEM Amsterdam Abstracts 2005.
    30. Xin Z, Browse J: Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. / Proc Natl Acad Sci USA 1998,95(13):7799-804. CrossRef
    31. Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C: Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K(+)/Na(+) selectivity and proline accumulation. / J Plant Physiol 2008,165(6):588-99. CrossRef
    32. Xin Z, Mandaokar A, Chen J, Last RL, Browse J: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. / Plant J 2007,49(5):786-99. CrossRef
    33. Wagner U, Edwards R, Dixon DP, Mauch F: Probing the diversity of the Arabidopsis glutathione S-transferase gene family. / Plant Mol Biol 2002,49(5):515-32. CrossRef
    34. Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD: Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. / Plant Physiol 2005,138(4):2048-060. CrossRef
    35. Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM: Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. / Plant Cell 1992,4(10):1229-236. CrossRef
    36. Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E: Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. / Plant Physiol 2005,139(1):509-18. CrossRef
    37. Mishina TE, Zeier J: Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. / Plant J 2007,50(3):500-13. CrossRef
    38. Capella AN, Menossi M, Arruda P, Benedetti CE: COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis. / Planta 2001,213(5):691-99. CrossRef
    39. Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG: MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. / Plant Physiol 2007,144(1):60-1. CrossRef
    40. Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS: The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. / Cell 2006,126(1):79-2. CrossRef
    41. Johnson KL, Jones BJ, Bacic A, Schultz CJ: The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. / Plant Physiol 2003,133(4):1911-925. CrossRef
    42. Yokoyama R, Nishitani K: A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. / Plant Cell Physiol 2001,42(10):1025-033. CrossRef
    43. Mouille G, Robin S, Lecomte M, Pagant S, Hofte H: Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. / Plant J 2003,35(3):393-04. CrossRef
    44. Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK: Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. / Dev Cell 2001,1(6):771-81. CrossRef
    45. Allen M, Qin W, Moreau F, Moffatt B: Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism. / Physiol Plant 2002,115(1):56-8. CrossRef
    46. Nylander M, Svensson J, Palva ET, Welin BV: Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. / Plant Mol Biol 2001,45(3):263-79. CrossRef
    47. Chung S, Parish RW: Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. / Plant J 2008,54(1):15-9. CrossRef
    48. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. / Proc Natl Acad Sci USA 2000,97(21):11632-1637. CrossRef
    49. Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. / Plant Mol Biol 2006,60(1):51-8. CrossRef
    50. Yamaguchi-Shinozaki K, Shinozaki K: Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. / Mol Gen Genet 1993, 236:2-. CrossRef
    51. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. / Plant Cell 1998,10(8):1391-406. CrossRef
    52. de Jonge HR, Hogema B, Tilly BC: Protein N-myristoylation: critical role in apoptosis and salt tolerance. / Sci STKE 2000,2000(63):PE1. CrossRef
    53. Boursiac Y, Chen S, Luu DT, Sorieul M, Dries N, Maurel C: Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. / Plant Physiol 2005,139(2):790-05. CrossRef
    54. Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JA: Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. / Plant Physiol 1997,114(1):161-66. CrossRef
    55. Reyes-Diaz M, Ulloa N, Zuniga-Feest A, Gutierrez A, Gidekel M, Alberdi M, Corcuera LJ, Bravo LA: Arabidopsis thaliana avoids freezing by supercooling. / J Exp Bot 2006,57(14):3687-696. CrossRef
    56. Farquhar GD, O'Leary MH, Berry JA: On the relationship between carbon isotop discrimination and the intercellular carbon dioxide concentration in leaves. / Australian Journal of Plant Physiology 1982, 9:121-37. CrossRef
    57. Farquhar GD, Richards RA: Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. / Aust J Plant Physiol 1984, 11:539-52. CrossRef
    58. Masle J, Gilmore SR, Farquhar GD: The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. / Nature 2005,436(7052):866-70. CrossRef
    59. Parry MAJ, Flexas J, Medrano H: Prospects for crop production under drought: research priorities and future directions. / Ann Appl Biol 2005, 147:211-26. CrossRef
    60. Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, Dudits D, Pais MS: Transcript identification and profiling during salt stress and recovery of Populus euphratica. / Tree Physiol 2004,24(3):265-76.
    61. Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, / et al.: Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. / Plant Journal 2006.
    62. Huerta L, Forment J, Gadea J, Fagoaga C, Pena L, Perez-Amador MA, Garcia-Martinez JL: Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. / Plant Cell Environ 2008.
    63. Foyer CH, Valadier MH, Migge A, Becker TW: Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. / Plant Physiol 1998,117(1):283-92. CrossRef
    64. Desikan R, Griffiths R, Hancock J, Neill S: A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. / Proc Natl Acad Sci USA 2002,99(25):16314-6318. CrossRef
    65. Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R: Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. / Plant Cell 2008,20(3):648-57. CrossRef
    66. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD: Breeding for high water-use efficiency. / J Exp Bot 2004,55(407):2447-460. CrossRef
    67. Zhu J, Dong CH, Zhu JK: Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. / Curr Opin Plant Biol 2007,10(3):290-95. CrossRef
    68. Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Caboche M, Lecharny A: FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. / Nucleic Acids Res 2002,30(1):94-7. CrossRef
    69. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, / et al.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. / Science 2003,301(5633):653-57. CrossRef
    70. Loudet O, Chaillou S, Krapp A, Daniel-Vedele F: Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. / Genetics 2003,163(2):711-22.
    71. Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M: Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. / PLoS ONE 2008,3(2):e1705. CrossRef
    72. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J: Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. / Plant Cell 2001,13(7):1499-510. CrossRef
    73. Estelle MA, Somerville C: Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. / Molecular and General Genetics MGG 1987,206(2):200-06. CrossRef
    74. Tester M, Davenport R: Na+ tolerance and Na+ transport in higher plants. / Ann Bot (Lond) 2003,91(5):503-27. CrossRef
    75. Caemmerer Sv, Farquhar GD: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. / Planta 1981,153(4):376-87. CrossRef
    76. Crowe ML, Serizet C, Thareau V, Aubourg S, Rouze P, Hilson P, Beynon J, Weisbeek P, van Hummelen P, Reymond P, / et al.: CATMA: a complete Arabidopsis GST database. / Nucleic Acids Res 2003,31(1):156-58. CrossRef
    77. Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B, / et al.: Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. / Genome Res 2004, 14:2176-189. CrossRef
    78. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, / et al.: Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. / Plant Cell 2004,16(8):2089-103. CrossRef
    79. Ge Y, Duboit S, Speed TP: Resampling-based multiple testing for microarray data analysis. / TEST 2003, 12:1-4. CrossRef
  • 作者单位:Oumaya Bouchabke-Coussa (1) (6)
    Marie-Luce Quashie (2) (6)
    Jose Seoane-Redondo (3) (6)
    Marie-Noelle Fortabat (6)
    Carine Gery (6)
    Agnes Yu (4) (6)
    Daphné Linderme (5) (6)
    Jacques Trouverie (6)
    Fabienne Granier (6)
    Evelyne Téoulé (6)
    Mylène Durand-Tardif (6)

    1. Cell Biology Laboratory, IJPB, INRA-CIRAD, UR0501, Route de St Cyr, F-78026, Versailles, France
    6. Variability and Abiotic Stress Tolerance, Genetics and Plant Breeding Laboratory, IJPB, INRA, UR0254, Route de St Cyr, F-78026, Versailles, France
    2. Physiology and Biotechnologies Laboratory, Faculty of Sciences, University of Lomé, BP 1515, Lomé, Togo
    3. Danmarks Tekniske Universitet, Institut for Vand og Milj?teknologi, Bygningstorvet, B115, DK-2800, KGS, Lyngby, Danmark
    4. URGV, Plant Genomics Research Unit, INRA/CNRS, UMR11, 2 rue Gaston Crémieux, CP5708, F-91057, Evry, France
    5. CIRAD, P?le de Protection des Plantes, Ligne Paradis, F-97410, St Pierre, France
文摘
Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700