Safe Data Transmission Architecture Based on Cloud for Internet of Things
详细信息    查看全文
  • 作者:Seokhoon Kim ; Wonshik Na
  • 关键词:Safe network ; IoT ; Cloud ; SDN
  • 刊名:Wireless Personal Communications
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:86
  • 期:1
  • 页码:287-300
  • 全文大小:1,103 KB
  • 参考文献:1.Prasad, A. S., & Rao, S. (2014). A mechanism design approach to resource procurement in cloud computing. IEEE Transactions on Computers, 63(1), 17鈥?0.CrossRef MathSciNet
    2.Qu, L., Wang, Y., Orgun, M. A., Liu, L., Liu, H., & Bouguettaya, A. (2015). CCCloud: Context-aware and credible cloud service selection based on subjective assessment and objective assessment. IEEE Transactions on Services Computing, 8(3), 369鈥?83.CrossRef
    3.Yin, Z., Yu, F. R., Bu, S., & Han, Z. (2015). Joint cloud and wireless networks operations in mobile cloud computing environments with telecom operator cloud. IEEE Transactions on Wireless Communications, 14(7), 4020鈥?033.CrossRef
    4.Wang, S., & Dey, S. (2013). Adaptive mobile cloud computing to enable rich mobile multimedia applications. IEEE Transactions on Multimedia, 15(4), 870鈥?83.CrossRef
    5.Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., & Buyya, R. (2014). Cloud-based augmentation for mobile devices: Motivation, taxonomies, and open challenges. IEEE Communications Surveys & Tutorials, 16(1), 337鈥?68.CrossRef
    6.Parashar, M., AbdelBaky, M., Rodero, I., & Devarakonda, A. (2013). Cloud paradigms and practices for computational and data-enabled science and engineering. Computing in Science & Engineering, 15(4), 10鈥?8.CrossRef
    7.Pandey, V., Singh, S., & Tapaswi, S. (2015). Energy and time efficient algorithm for cloud offloading using dynamic profiling. Wireless Personal Communications, 80(4), 1687鈥?701.CrossRef
    8.Wang, Y., Chen, I.-R., & Wang, D.-C. (2015). A survey of mobile cloud computing applications: Perspectives and challenges. Wireless Personal Communications, 80(4), 1607鈥?623.CrossRef
    9.Kim, S., Kim, G.-J., & Chung, K.-Y. (2014). Performance analysis of non-PC/SC based mini-WiMAX connection manager. Cluster Computing, 17(3), 775鈥?89.CrossRef
    10.Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F. (2014). Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578鈥?586.CrossRef
    11.Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060鈥?071.CrossRef MathSciNet
    12.Jarschel, M., Zinner, T., Hossfeld, T., Tran-Gia, P., & Kellerer, W. (2014). Interfaces, attributes, and use cases: A compass for SDN. IEEE Communications Magazine, 52(6), 210鈥?17.CrossRef
    13.Kyoseva, T., Poulkov, V., Mihaylov, M., & Mihovska, A. (2014). Disruptive innovations as a driving force for the change of wireless telecommunication infrastructures. Wireless Personal Communications, 78(3), 1683鈥?697.CrossRef
    14.Miao, W., Agraz, F., Peng, S., Spadaro, S., Bernini, G., Perello, J., 鈥?Calabretta, N. (2015). SDN-enabled OPS with QoS guarantee for reconfigurable virtual data center networks. IEEE/OSA Journal of Optical Communications and Networking, 7(7), 634鈥?43.CrossRef
    15.Tomovic, S., Pejanovic-Djurisic, M., & Radusinovic, I. (2014). SDN based mobile networks: Concepts and benefits. Wireless Personal Communications, 78(3), 1629鈥?644.CrossRef
    16.Bontu, C. S., Periyalwar, S., & Pecen, M. (2014). Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication. IEEE Vehicular Technology Magazine, 9(1), 54鈥?3.CrossRef
    17.oneM2M. (2014). oneM2M functional architecture baseline draft. oneM2M Technical Specification, oneM2M-TS-0001-V-2014-08
    18.Li, Q., Xu, M., Yang, Y., Gao, L., Cui, Y., & Wu, J. (2014). Safe and practical energy-efficient detour routing in IP networks. IEEE/ACM Transactions on Networking, 22(6), 1925鈥?937.CrossRef
    19.Kang, W., Sha, L., Berlin, R. B., & Goldman, J. M. (2015). The design of safe networked supervisory medical systems using organ-centric hierarchical control architecture. IEEE Journal of Biomedical and Health Informatics, 19(3), 1077鈥?086.
    20.Kang, K., Pang, Z., Da Xu, L., Ma, L., & Wang, C. (2014). An interactive trust model for application market of the internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1516鈥?526.CrossRef
    21.Ferrant, J.-L., & Ruffini, S. (2011). Evolution of the standards for packet network synchronization. IEEE Communications Magazine, 49(2), 132鈥?38.CrossRef
    22.Ouellette, M., Ji, J., Liu, S., & Li, H. (2011). Using IEEE 1588 and boundary clocks for clock synchronization in telecom networks. IEEE Communications Magazine, 49(2), 164鈥?71.CrossRef
    23.IEEE. (2011). IEEE standard profile for use of IEEE 1588 precision time protocol in power system applications. IEEE Standard, C37.238, 1鈥?6.
    24.Li, C., & Li, L. (2014). Phased scheduling for resource-constrained mobile devices in mobile cloud computing. Wireless Personal Communications, 77(4), 2817鈥?837.CrossRef
    25.Kim, S., & Ryoo, I. (2010). Packet forwarding scheme based on interworking architecture for future internet. IEICE Transactions on Communications, E93-B(3), 546鈥?50.CrossRef
    26.Kim, S. (2015). QoS-aware data forwarding architecture for multimedia streaming services in hybrid peer-to-peer networks. Peer-to-Peer Networking and Applications, 8(4), 557鈥?66.CrossRef
    27.Ryoo, I., Na, W., & Kim, S. (2015). Information exchange architecture based on software defined networking for cooperative intelligent transportation systems. Cluster Computing, 18(2), 771鈥?82.CrossRef
    28.Kim, S., & Suk, J. (2015). Efficient peer-to-peer context awareness data forwarding scheme in emergency situations. Peer-to-Peer Networking and Applications. doi:10.鈥?007/鈥媠12083-015-0401-8 .
  • 作者单位:Seokhoon Kim (1)
    Wonshik Na (2)

    1. Department of Software Engineering, Changshin University, 262, Paryong-ro, MasanHoiwon-gu, Changwon-si, Gyeongsangnam-do, 630-764, Republic of Korea
    2. Department of Computer Science, Namseoul University, 91, Daehak-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Processor Architectures
  • 出版者:Springer Netherlands
  • ISSN:1572-834X
文摘
Nowadays, cloud computing technology, and IoT technology are one of the inevitable core trends. These technologies are key technology of various ICT convergence services, and it will create a value-added business and market. Although it is in its infancy, there is no doubt that it will be a game changer. However, cloud computing technology and IoT technology have some limitations especially in openness and standardization because they have been independently evolved. This is why they expose some weak-points, which are difficult to expand to various services, and it also has some problems to interwork other devices or services. In the safe network case, current safe network service has a restriction because it is based on closed networks. In addition, the key technology in the safe networking has an independent scheme or architecture. Due to the fact that we need new architecture to integrate entire networks, there are no certain alternatives so far. It is because most of related works are focused on the providing to just the safety in the networks. To solve these problems, we propose a safe data transmission architecture for the IoT ecosystems. The proposed architecture is a kind of software defined network base cloud, and it can provide the safe data transmission with QoS/QoE. Basically, the proposed architecture has three states, install, start and working, and four phase, negotiation, initialization, configuration and execution. In the install state, the devices set some parameters such as a synchronization time between node in cloud and IoT device. Based on the install state, data transmission will be started in the start state. In the start state, the nodes start data transmission by the set parameters in the install state. And then, the nodes keep the working state. However, it can be changed whenever user鈥檚 request to upgrade the transmission security. The proposed architecture has some enhanced synchronization algorithms to provide a safe data transmission and to guarantee a QoS/QoE. Based on the architecture, we verified that the proposed architecture outperforms than legacy architectures in various aspects, and we are shown these simulation results by using OPNET. Keywords Safe network IoT Cloud SDN

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700