Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography
详细信息    查看全文
  • 作者:Janos Groh (8)
    David Stadler (8)
    Mathias Buttmann (9)
    Rudolf Martini (8)

    8. Department of Neurology
    ; Developmental Neurobiology ; University of Wuerzburg ; Josef-Schneider-Str. 11 ; D-97080 ; Wuerzburg ; Germany
    9. Department of Neurology
    ; University of Wuerzburg ; Josef-Schneider-Str. 11 ; D-97080 ; Wuerzburg ; Germany
  • 关键词:Optical coherence tomography ; Neuronal ceroid lipofuscinosis ; Neurodegeneration ; Retinal degeneration ; Lysosomal storage disease
  • 刊名:Acta Neuropathologica Communications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2
  • 期:1
  • 全文大小:1,924 KB
  • 参考文献:1. Adhi, M, Duker, JS (2013) Optical coherence tomography鈥揷urrent and future applications. Curr Opin Ophthalmol 24: pp. 213-221 CrossRef
    2. Simao, LM (2013) The contribution of optical coherence tomography in neurodegenerative diseases. Curr Opin Ophthalmol 24: pp. 521-527 CrossRef
    3. Frohman, EM, Fujimoto, JG, Frohman, TC, Calabresi, PA, Cutter, G, Balcer, LJ (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4: pp. 664-675 CrossRef
    4. Kollmann, K, Uusi-Rauva, K, Scifo, E, Tyynela, J, Jalanko, A, Braulke, T (2013) Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta 1832: pp. 1866-1881 CrossRef
    5. Palmer, DN, Barry, LA, Tyynela, J, Cooper, JD (2013) NCL disease mechanisms. Biochim Biophys Acta 1832: pp. 1882-1893 CrossRef
    6. Anderson, GW, Goebel, HH, Simonati, A (2013) Human pathology in NCL. Biochim Biophys Acta 1832: pp. 1807-1826 CrossRef
    7. Warrier, V, Vieira, M, Mole, SE (2013) Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses. Biochim Biophys Acta 1832: pp. 1827-1830 CrossRef
    8. Haltia, M (2006) The neuronal ceroid-lipofuscinoses: from past to present. Biochim Biophys Acta 1762: pp. 850-856 CrossRef
    9. Haltia, M, Goebel, HH (2013) The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta 1832: pp. 1795-1800 CrossRef
    10. Bozorg, S, Ramirez-Montealegre, D, Chung, M, Pearce, DA (2009) Juvenile neuronal ceroid lipofuscinosis (JNCL) and the eye. Surv Ophthalmol 54: pp. 463-471 CrossRef
    11. Weleber, RG, Gupta, N, Trzupek, KM, Wepner, MS, Kurz, DE, Milam, AH (2004) Electroretinographic and clinicopathologic correlations of retinal dysfunction in infantile neuronal ceroid lipofuscinosis (infantile Batten disease). Mol Genet Metab 83: pp. 128-137 CrossRef
    12. Jalanko, A, Vesa, J, Manninen, T, von Schantz, C, Minye, H, Fabritius, AL, Salonen, T, Rapola, J, Gentile, M, Kopra, O, Peltonen, L (2005) Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiol Dis 18: pp. 226-241 CrossRef
    13. Gupta, P, Soyombo, AA, Atashband, A, Wisniewski, KE, Shelton, JM, Richardson, JA, Hammer, RE, Hofmann, SL (2001) Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci U S A 98: pp. 13566-13571 CrossRef
    14. Cotman, SL, Vrbanac, V, Lebel, LA, Lee, RL, Johnson, KA, Donahue, LR, Teed, AM, Antonellis, K, Bronson, RT, Lerner, TJ, MacDonald, ME (2002) Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet 11: pp. 2709-2721 CrossRef
    15. Katz, ML, Shibuya, H, Liu, PC, Kaur, S, Gao, CL, Johnson, GS (1999) A mouse gene knockout model for juvenile ceroid-lipofuscinosis (Batten disease). J Neurosci Res 57: pp. 551-556 CrossRef
    16. Mitchison, HM, Bernard, DJ, Greene, ND, Cooper, JD, Junaid, MA, Pullarkat, RK, de Vos, N, Breuning, MH, Owens, JW, Mobley, WC, Gardiner, RM, Lake, BD, Taschner, PE, Nussbaum, RL (1999) Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. the Batten Mouse Model Consortium [corrected]. Neurobiol Dis 6: pp. 321-334 CrossRef
    17. Griffey, M, Macauley, SL, Ogilvie, JM, Sands, MS (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12: pp. 413-421 CrossRef
    18. Groh, J, Kuhl, TG, Ip, CW, Nelvagal, HR, Sri, S, Duckett, S, Mirza, M, Langmann, T, Cooper, JD, Martini, R (2013) Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 136: pp. 1083-1101 CrossRef
    19. Lei, B, Tullis, GE, Kirk, MD, Zhang, K, Katz, ML (2006) Ocular phenotype in a mouse gene knockout model for infantile neuronal ceroid lipofuscinosis. J Neurosci Res 84: pp. 1139-1149 CrossRef
    20. Seigel, GM, Lotery, A, Kummer, A, Bernard, DJ, Greene, ND, Turmaine, M, Derksen, T, Nussbaum, RL, Davidson, B, Wagner, J, Mitchison, HM (2002) Retinal pathology and function in a Cln3 knockout mouse model of juvenile neuronal ceroid lipofuscinosis (batten disease). Mol Cell Neurosci 19: pp. 515-527 CrossRef
    21. Staropoli, JF, Haliw, L, Biswas, S, Garrett, L, Holter, SM, Becker, L, Skosyrski, S, Da Silva-Buttkus, P, Calzada-Wack, J, Neff, F, Rathkolb, B, Rozman, J, Schrewe, A, Adler, T, Puk, O, Sun, M, Favor, J, Racz, I, Bekeredjian, R, Busch, DH, Graw, J, Klingenspor, M, Klopstock, T, Wolf, E, Wurst, W, Zimmer, A, Lopez, E, Harati, H, Hill, E, Krause, DS (2012) Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 7: pp. e38310 CrossRef
    22. Weimer, JM, Custer, AW, Benedict, JW, Alexander, NA, Kingsley, E, Federoff, HJ, Cooper, JD, Pearce, DA (2006) Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons. Neurobiol Dis 22: pp. 284-293 CrossRef
    23. Katz, ML, Johnson, GS, Tullis, GE, Lei, B (2008) Phenotypic characterization of a mouse model of juvenile neuronal ceroid lipofuscinosis. Neurobiol Dis 29: pp. 242-253 CrossRef
    24. Volz, C, Mirza, M, Langmann, T, Jagle, H (2014) Retinal function in aging homozygous cln3 (deltaex7/8) knock-in mice. Adv Exp Med Biol 801: pp. 495-501 CrossRef
    25. Mattapallil, MJ, Wawrousek, EF, Chan, CC, Zhao, H, Roychoudhury, J, Ferguson, TA, Caspi, RR (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6聽N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53: pp. 2921-2927 CrossRef
    26. Wolf-Schnurrbusch, UE, Ceklic, L, Brinkmann, CK, Iliev, ME, Frey, M, Rothenbuehler, SP, Enzmann, V, Wolf, S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50: pp. 3432-3437 CrossRef
    27. Leung, CK, Lindsey, JD, Chen, L, Liu, Q, Weinreb, RN (2009) Longitudinal profile of retinal ganglion cell damage assessed with blue-light confocal scanning laser ophthalmoscopy after ischaemic reperfusion injury. Br J Ophthalmol 93: pp. 964-968 CrossRef
    28. Mirza, M, Volz, C, Karlstetter, M, Langiu, M, Somogyi, A, Ruonala, MO, Tamm, ER, Jagle, H, Langmann, T (2013) Progressive retinal degeneration and glial activation in the CLN6 (nclf) mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation. PLoS One 8: pp. e75963 CrossRef
    29. Hainsworth, DP, Liu, GT, Hamm, CW, Katz, ML (2009) Funduscopic and angiographic appearance in the neuronal ceroid lipofuscinoses. Retina 29: pp. 657-668 CrossRef
    30. Cooper, JD (2010) The neuronal ceroid lipofuscinoses: the same, but different?. Biochem Soc Trans 38: pp. 1448-1452 CrossRef
    31. K眉hl, TG, Dihanich, S, Wong, AMS, Cooper, JD (2013) Regional brain atrophy in mouse models of neuronal ceroid lipofuscinosis: a new rostrocaudal perspective. J Child Neurol 28: pp. 1117-1122 CrossRef
    32. Sarkar, C, Chandra, G, Peng, S, Zhang, Z, Liu, A, Mukherjee, AB (2013) Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat Neurosci 16: pp. 1608-1617 CrossRef
    33. Hawkins-Salsbury, JA, Cooper, JD, Sands, MS (2013) Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta 1832: pp. 1906-1909 CrossRef
    34. Lidster, K, Jackson, SJ, Ahmed, Z, Munro, P, Coffey, P, Giovannoni, G, Baker, MD, Baker, D (2013) Neuroprotection in a novel mouse model of multiple sclerosis. PLoS One 8: pp. e79188 CrossRef
    35. Syc, SB, Saidha, S, Newsome, SD, Ratchford, JN, Levy, M, Ford, E, Crainiceanu, CM, Durbin, MK, Oakley, JD, Meyer, SA, Frohman, EM, Calabresi, PA (2012) Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 135: pp. 521-533 CrossRef
    36. Paquet, C, Boissonnot, M, Roger, F, Dighiero, P, Gil, R, Hugon, J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer鈥檚 disease. Neurosci Lett 420: pp. 97-99 CrossRef
  • 刊物主题:Neurosciences;
  • 出版者:BioMed Central
  • ISSN:2051-5960
文摘
Introduction The neuronal ceroid lipofuscinoses constitute a group of fatal inherited lysosomal storage diseases that manifest in profound neurodegeneration in the CNS. Visual impairment usually is an early symptom and selective degeneration of retinal neurons has been described in patients suffering from distinct disease subtypes. We have previously demonstrated that palmitoyl protein thioesterase 1 deficient (Ppt1 -/- ) mice, a model of the infantile disease subtype, exhibit progressive axonal degeneration in the optic nerve and loss of retinal ganglion cells, faithfully reflecting disease severity in the CNS. Here we performed spectral domain optical coherence tomography (OCT) in Ppt1 -/- and ceroid lipofuscinosis neuronal 3 deficient (Cln3 -/- ) mice, which are models of infantile and juvenile neuronal ceroid lipofuscinosis, respectively, in order to establish a non-invasive method to assess retinal alterations and monitor disease severity in vivo. Results Blue laser autofluorescence imaging revealed increased accumulation of autofluorescent storage material in the inner retinae of 7-month-old Ppt1 -/- and of 16-month-old Cln3 -/- mice in comparison with age-matched control littermates. Additionally, optical coherence tomography demonstrated reduced thickness of retinae in knockout mice in comparison with age-matched control littermates. High resolution scans and manual measurements allowed for separation of different retinal composite layers and revealed a thinning of layers in the inner retinae of both mouse models at distinct ages. OCT measurements correlated well with subsequent histological analysis of the same retinae. Conclusions These results demonstrate the feasibility of OCT to assess neurodegenerative disease severity in mouse models of neuronal ceroid lipofuscinosis and might have important implications for diagnostic evaluation of disease progression and therapeutic efficacy in patients. Moreover, the non-invasive method allows for longitudinal studies in experimental models, reducing the number of animals used for research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700