Multichannel fiber lasers anchored on the ITU grid
详细信息    查看全文
  • 作者:D. A. Popov ; A. B. Vasiliev ; V. G. Voronin…
  • 关键词:multi ; frequency laser ; multichannel laser ; ring laser ; erbium ; doped ; fiber laser ; wavelength multiplexing ; multichannel telecommunication system ; telecommunication frequency grid
  • 刊名:Moscow University Physics Bulletin
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:70
  • 期:5
  • 页码:390-396
  • 全文大小:621 KB
  • 参考文献:1.C. Zhang, J. F. Zhao, and C. Y. Miao, Laser Phys. 22, 1573 (2012).CrossRef ADS
    2.N. G. Basov, M. A. Gubin, V. V. Nikitin, and E. D. Protsenko, Sov. J. Quantum Electron. 14, 731 (1984). doi 10.1070/QE1984v014n06 ABEH005142CrossRef ADS
    3.O. E. Nanii, Doctoral Dissertation in Mathematics and Physics (Moscow, 1999).
    4.O. E. Nanii, E. G. Pavlova, A. A. Susyan, and B. T. Hoan, Laser Phys. 18, 1238 (2008).CrossRef ADS
    5.F. Aronowitz, in Laser Applications (Academic, New York, 1971), pp. 133鈥?00.
    6.Ming-Xing Jiao, Yun Liu, and Jun-Hong Xing, J. Phys. Conf. Ser. 48, 1482 (2007).CrossRef ADS
    7.J. P. Yao, J. Lightwave Technol. 27, 314 (2009).CrossRef ADS
    8.C. M. Weinert, R. Ludwig, W. Pieper, H. G. Weber, D. Breuer, K. Petermann, and F. Kuuppers, J. Lightwave Technol. 17, 2276 (1999).CrossRef ADS
    9.M. I. Hayee and A. E. Willner, IEEE Photonics Technol. Lett. 11, 991 (1999).CrossRef ADS
    10.M. Arikawa, E. T. de Gabory, T. Ito, and K. Fukuchi, in Proc. Opt. Fiber Commun. Conf., San Francisco, California, USA, 2014.
    11.N. V. Gurkin, V. Mikhailov, O. E. Nanii, A. G. Novikov, V. N. Treshchnikov, and R. R. Ubaydullaev, Laser Phys. Lett. 11, 095103 (2014).CrossRef ADS
    12.O. V. Yushko, O. E. Nanii, A. A. Redyuk, V. N. Treshchkov, and N. P. Fedoruk, Quantum Electron. 45, 75 (2015). doi 10.1070/QE2015v045n01ABEH015635CrossRef ADS
    13.A. A. Redyuk, O. E. Nanii, V. N. Treshchikov, V. Mikhailov, and N. P. Fedoruk, Laser Phys. Lett. 12, 025101 (2015).CrossRef ADS
    14.V. V. Gainov, N. V. Gurkin, S. N. Lukinih, S. G. Akopov, S. Makovejs, S. Y. Ten,O. E. Nanii, and V. N. Treshchikov, Laser Phys. Lett. 10, 075107 (2013).CrossRef ADS
    15.N. V. Gurkin, Yu. A. Kapin, O. E. Nanii, A. G. Novikov, V. N. Pavlov, S. O. Plaksin, A. Yu. Plotskii, and V. N. Treshchikov, Quant. Electron. 43, 546 (2013). doi 10.1070/QE2013v043n06ABEH014899CrossRef ADS
    16.V. G. Gudelev, V. V. Mashko, N. K. Nikeenko, G. I. Ryabtsev, A. B. Stalmashonak, and L. L. Teplyashin, Appl. Phys. B: Lasers Opt. 76, 249 (2003).CrossRef ADS
    17.J. L. Gouet, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, Opt. Lett. 32, 1090 (2007).CrossRef ADS
    18.V. G. Voronin, K. P. Dolgaleva, and O. E. Nanii, Quantum Electron 30, 778 (2000). doi 10.1070/QE2000v030n09ABEH001822CrossRef ADS
    19.V. G. Voronin and O. E. Nanii, Moscow Univ. Phys. Bull. 54 (4), 86 (1999). http://鈥媣muphysmsuru/鈥?abstract/1999/4/99-4-64.
    20.A. V. Dotsenko, L. S. Kornienko, N. V. Kravtsov, E. G. Lariontsev, O. E. Nanii, and A. N. Shelaevet, Sov. J. Quantum Electron. 16, 58 (1986). doi 10.1070/ QE1986v016n01ABEH005165.CrossRef ADS
    21.O. E. Nanii, Sov. J. Quantum Electron. 22, 703 (1992). doi 10.1070/QE1992v022n08ABEH003577CrossRef ADS
    22.V. G. Voronin, O. E. Nanii, A. A. Susyan, and V. I. Khlystov, Moscow Univ. Phys. Bull. 65, 174 (2010). doi 10.3103/S0027134910030045CrossRef ADS
    23.V. G. Voronin, O. E. Nanii, A. A. Sus鈥檡an, and V. I. Khlystov, Quantum Electron. 40, 111 (2010). doi 10.1070/QE2010v040n02 ABEH014018CrossRef ADS
    24.V. G. Voronin, Ya. V. Sya, O. E. Nanii, and V. I. Khlystov, Quantum Electron. 37, 339 (2007). doi 10.1070/ QE2007v037n04 ABEH013374CrossRef ADS
    25.V. G. Voronin, O. E. Nanii, A. N. Turkin, A. N. Kurkov, S. E. Vasiliev, O. I. Lobadetskii, D. A. Gubankov, and M. N. Nikolaev, Moscow Univ. Phys. Bull. 57 (2), 60 (2002).
    26.A. V. Kir鈥檡anov, L. S. Kornienko, N. V. Kravtsov, et al., Moscow Univ. Phys. Bull. 41 (1), 93 (1986).
    27.D. V. Zelenin, R. A. Karle, V. N. Petrovskii, and E. D. Protsenko, Quantum Electron. 32, 5 (2002). doi 10.1070/QE2002v032n01 ABEH002116CrossRef ADS
    28.O. E. Nanii, and A. N. Shelaev, Sov. J. Quantum Electron. 19, 726 (1989). doi 10.1070/ QE1989v019n06ABEH008118CrossRef
    29.J. Yao, J. Yao, Z. Deng, and J. Liu, IEEE Photonics Technol. Lett. 17, 756 (2005).CrossRef ADS
    30.X. Feng, H.-Y. Tam, C. Lu, et al., IEEE Photonics Technol. 21, 1314 (2009). doi 10.1109/ LPT.2009.2026433CrossRef ADS
    31.N. Park, J. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).CrossRef ADS
    32.A. Bellemare, M. Karasek, M. Rochette, and M. T锚tu, J. Lightwave Technol. 18, 825 (2000).CrossRef ADS
    33.O. E. Nanii, Quantum Electron. 26, 15 (1996). doi 10.1070/QE1996v026n01 ABEH000575CrossRef ADS
    34.M. Bolshtyansky, J. Lightwave Technol. 21, 1032 (2003).CrossRef ADS
    35.Z. L. Hu, P. Xu, and N. Jiang, Laser Phys. 2, 1590 (2012).CrossRef ADS
    36.ITU-T G.694.1. Spectral grids for WDM applications: DWDM frequency grid. https://鈥媤wwituint/鈥媟ec/鈥婽REC-G.鈥?94.鈥?-200206-S/鈥媏n.鈥?/div>
  • 作者单位:D. A. Popov (1) (2)
    A. B. Vasiliev (1)
    V. G. Voronin (1)
    O. E. Nanii (1) (2)
    V. N. Treshchikov (2)

    1. Department of Physics, Moscow State University, Moscow, 119991, Russia
    2. T8 LLC, ul. Krasnobogatyrskaya 44/1, office 826, Moscow, 107076, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-8460
文摘
We propose a multichannel erbium-doped-fiber ring laser in which the spatial separation of 40 spectral channels is produced by a pair of dispersive elements: a multiplexer and demutliplexer. Both 2- and 3-channel generation modes with the possibility of channel switching and power control were used and studied experimentally. The long-term stability of these generation modes on a several-hour time scale is at least 10%. The generation characteristics are described satisfactorily by a simple phenomenological model. In the framework of this model the interaction between the generation channels, which stems from saturation in the active media, is determined by the cross-saturation coefficients, which depend on the frequency spacing between the channels. Good agreement was found between the experimentally measured spectral dependence of the cross saturation and the spectral shape of the holes in the gain spectrum of the erbium amplifiers. In the three-channel generation mode, suppression of the central channel occurs with an increase in the pumping power. An explanation of this effect is given. Keywords multi-frequency laser multichannel laser ring laser erbium-doped-fiber laser wavelength multiplexing multichannel telecommunication system telecommunication frequency grid

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700