Insights into environmental drivers of acoustic angular response using a self-organising map and hierarchical clustering
详细信息    查看全文
  • 作者:James Daniell ; Justy Siwabessy ; Scott Nichol ; Brendan Brooke
  • 刊名:Geo-Marine Letters
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:35
  • 期:5
  • 页码:387-403
  • 全文大小:10,783 KB
  • 参考文献:Briggs KB, Williams KL, Jackson DR, Jones CD, Ivakin AN, Osri TH (2002) Fine-scale sedimentary structure: implications for acoustic remote sensing. Mar Geol 182:141鈥?59CrossRef
    Brock G, Pihur V, Datta S, Datta S (2008) ClValid: an R package for cluster validation. J Stat Softw 25(4):1鈥?2
    Brooke B, Nichol S, Hughes M, McArthur M, Anderson T, Przeslawski R, Siwabessy J, Heyward A, Battershill C, Colquhoun J, Doherty P (2009) Carnarvon Shelf Survey Post-cruise Report. Geoscience Australia, Record 2009/02, Canberra, Australia
    Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502鈥?20CrossRef
    Calvert J, Strong JA, Service M, McGonigle C, Quinn R (2014) An evaluation of the supervised and unsupervised classification techniques for benthic marine habitat mapping using multibeam echosounder data. ICES J Mar Sci. doi:10.鈥?093/鈥媔cesjms/鈥媐su223
    Che Hasan R, Ierodiaconou D, Laurenson L, Schimel A (2014) Integrating multibeam backscatter angular response mosaic and bathymetry data for benthic habitat mapping. PLoS ONE 9(5), e97339. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?097339 CrossRef
    De Falco D, Tonielli R, Di Martino G, Innangi S, Simeone S, Parnum IM (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30:1941鈥?950CrossRef
    de Moustier CP, Alexandrou D (1991) Angular dependence of 12-kHz seafloor acoustic backscatter. J Acoust Soc Am 90(1):522鈥?31CrossRef
    de Moustier C, Matsumoto H (1993) Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems. Mar Geophys Res 15:27鈥?2CrossRef
    Dunn JC (1974) Well separated clusters and fuzzy partitions. J Cybernet 4:95鈥?04CrossRef
    Ferrini VL, Flood RD (2006) The effects of fine-scale surface roughness and grain size on 300kHz multibeam backscatter intensity in sandy marine sedimentary environments. Mar Geol 228:153鈥?72CrossRef
    Fonseca L, Calder BR (2007) Clustering acoustic backscatter in the angular response space. U.S. Hydrographic Conference (US HYDRO), Norfolk
    Fonseca L, Mayer L (2007) Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data. Mar Geophys Res 28:119鈥?26CrossRef
    Fonseca L, Brown C, Calder B, Mayer L, Rzhanov Y (2009) Angular range analysis of acoustic themes from Stanton Banks Ireland: a link between visual interpretation and multibeam echosounder angular signatures. Appl Acoust 70(10):1289鈥?304CrossRef
    Friedman A, Pizarro O, Williams SB, Johnson-Roberson M (2012) Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 7(12):e50440. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?050440 CrossRef
    Gavrilov AN, Duncan AJ, McCauley RD, Parnum IM, Penrose JD, Siwabessy PJW, Woods AJ, Tseng YT (2005b) Characterization of the seafloor in Australia鈥檚 coastal zone using acoustic techniques. Proceedings of the International Conference in Underwater Acoustic Measurements: Technologies & Results, Crete, Greece
    Goff JA, Olson HC, Duncan CS (2000) Correlation of sidescan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Mar Lett 20:43鈥?9CrossRef
    Hamilton EL (1970) Sound velocity and related properties of marine sediments, North Pacific. J Geophys Res 75:4423鈥?446CrossRef
    Hamilton LJ, Parnum I (2011) Acoustic Seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves. Cont Shelf Res 31:138鈥?48CrossRef
    Hamilton EL, Shumway G, Menard HW, Shipek CJ (1956) Acoustic and physical properties of shallow-water sediments off San Diego. J Acoust Soc Am 28:1鈥?5CrossRef
    Handl J, Knowles J, Kell DB (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15):3201鈥?212CrossRef
    Huang Z, Siwabessy J, Nichol S, Anderson T, Brooke B (2013) Predictive mapping of seabed cover types using angular response curves of multibeam backscatter data: testing different feature analysis approaches. Cont Shelf Res 61鈥?2:12鈥?2CrossRef
    Huang Z, Siwabessy J, Nichol SL, Brooke BP (2014) Predictive mapping of seabed substrata using high-resolution multibeam sonar data: a case study from a shelf with complex geomorphology. Mar Geol 357:37鈥?2CrossRef
    Hughes Clarke JE, Danforth BW, Valentine P (1997) Aerial seabed classification using backscatter angular response at 95kHz. Shallow Water, NATO SACLANTCEN, Conference Proceedings Series CP, vol. 45 pp 243-250
    Jackson DR, Winebrenner DP, Ishimaru A (1986) Application of the composite roughness model to high-frequency bottom backscatter. J Acoust Soc Am 79:1410鈥?422CrossRef
    Jackson DR, Briggs KB, Williams KL, Richardson MD (1996) Tests of models for high-frequency seafloor backscatter. IEEE J Ocean Eng 21(4):458鈥?70CrossRef
    Johnson-Roberson M, Pizarro O, Williams SB, Mahon I (2010) Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J Field Robot 27:21鈥?1CrossRef
    Kaufman L, Rousseeuw PJ (1990) Finding groups in data. Wiley, New York
    Kohonen T (1990) The self-organising Map. Proc IEEE 78(9):1464鈥?480CrossRef
    Kohonen T, Hynninen J, Kangas J, Laaksonen J (1996) SOM_PAK: the self-organising-map program package. Helsinki University of Technology, Laboratory of Computer and Information Science, Technical Report A31, Helsinki
    Lamarche G, Lurton X, Verdier A, Augustin J (2011) Quantitative characterisation of seafloor substrate and bedforms using advanced processing of multibeam backscatter 鈥?application to Cook Strait, New Zealand. Cont Shelf Res 31:93鈥?09CrossRef
    Lyons AP, Anderson AL, Dwan FS (1994) Acoustic scattering from the seafloor: modelling and data comparison. J Acoust Soc Am 95(5):2441鈥?451CrossRef
    M眉ller G, Gastner M (1971) The 鈥淜arbonat-Bombe鈥? a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrbuch Mineral 10:466鈥?69
    Nichol SL, Brooke BP (2011) Shelf habitat distribution as a legacy of late quaternary marine transgressions: a case study for a tropical carbonate province. Cont Shelf Res 31:1845鈥?857CrossRef
    Parnum I (2007) Benthic habitat mapping using multibeam sonar systems. Ph.D. Thesis, Curtin University of Technology, Western Australia
    R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Rousseeuw PJ (1987) Silhouettes: a graphical Aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53鈥?5CrossRef
    Rzhanov Y, Fonseca L, Mayer L (2012) Construction of seafloor thematic maps from multibeam acoustic backscatter angular response. Comput Geosci 41:181鈥?87CrossRef
    Seiler J, Friedman AL, Steinberg D, Barrett N, Williams A, Holbrook NJ (2012) Image-based continental shelf habitat mapping using novel automated data extraction techniques. Cont Shelf Res 45:87鈥?7CrossRef
    Stein DL, Tissot BN, Hixon MA, Barss WH (1992) Fish鈥揾abitat associations on a deep reef at the edge of the Oregon continental shelf. Fish Bull 90:540鈥?51
    Talukdar KK, Tyce RC, Clay CS (1995) Interpretation of Sea Beam backscatter data collected at the Laurentian fan off Nova Scotia using acoustic backscatter theory. J Acoust Soc Am 97(3):1545鈥?558CrossRef
    Ultsch A, Siemon HP (1990) Kohonen鈥檚 self-organising feature maps for exploratory data analysis. Proceedings INNC90, International Neural Network Conference, pp 305-308
    Urick RJ (1983) Principles of underwater sound, 3rd edn. Peninsula, Los Altos
    Vesanto J, Alhoniemi E (2000) Clustering of the self-organising Map. IEEE Trans Neural Netw 11(3):586鈥?00CrossRef
    Williams KL, Jackson DR, Thorsos EI, Tang D, Briggs KB (2002) Acoustic backscattering experiments in a well characterized sand sediment: data/model comparisons using sediment fluid and Biot models. IEEE J Ocean Eng 27(3):376鈥?87CrossRef
  • 作者单位:James Daniell (1) (3)
    Justy Siwabessy (2)
    Scott Nichol (2)
    Brendan Brooke (2)

    1. James Cook University, Townsville, QLD, 4811, Australia
    3. College of Science Technology and Engineering, James Cook University, Townsville, QLD, 4811, Australia
    2. Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1157
文摘
Acoustic backscatter from the seafloor is a complex function of signal frequency, seabed roughness, grain size distribution, benthos, bioturbation, volume reverberation, and other factors. Angular response is the variation in acoustic backscatter with incident angle and is considered be an intrinsic property of the seabed. An unsupervised classification technique combining a self-organising map (SOM) and hierarchical clustering was used to create an angular response facies map and explore the relationships between acoustic facies and ground truth data. Cluster validation routines indicated that a two cluster solution was optimal and separated sediment dominated environments from mixtures of sediment and hard ground. Low cluster separation limited cluster validation routines from identifying fine cluster structure visible with an AR density plot. Cluster validation, aided by a visual comparison with an AR density plot, indicated that a 14 cluster solution was also a suitable representation of the input dataset. Clusters that were a mixture of hard and unconsolidated substrates displayed an increase in backscatter with an increase in the occurrence of hard ground and highlighted the sensitivity of AR curves to the presence of even modest amounts of hard ground. Remapping video observations and sediment data onto the SOM matrix is innovative and depicts the relationship between ground truth data and cluster structure. Mapping environmental variables onto the SOM matrix can show broad trends and localised peaks and troughs and display the variability of ground truth data within designated clusters. These variables, when linked to AR curves via clusters, can indicate how environmental factors influence the shape of the curves. Once these links are established they can be incorporated into improved geoacoustic models that replicate field observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700