T7 Endonuclease I Mediates Error Correction in Artificial Gene Synthesis
详细信息    查看全文
  • 作者:Ana Filipa Sequeira ; Catarina I. P. D. Guerreiro…
  • 刊名:Molecular Biotechnology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:58
  • 期:8-9
  • 页码:573-584
  • 全文大小:1,240 KB
  • 刊物主题:Biotechnology; Biochemistry, general; Cell Biology; Protein Science; Biological Techniques; Human Genetics;
  • 出版者:Springer US
  • ISSN:1559-0305
  • 卷排序:58
文摘
Efficacy of de novo gene synthesis largely depends on the quality of overlapping oligonucleotides used as template for PCR assembly. The error rate associated with current gene synthesis protocols limits the efficient and accurate production of synthetic genes, both in the small and large scales. Here, we analysed the ability of different endonuclease enzymes, which specifically recognize and cleave DNA mismatches resulting from incorrect impairments between DNA strands, to remove mutations accumulated in synthetic genes. The gfp gene, which encodes the green fluorescent protein, was artificially synthesized using an integrated protocol including an enzymatic mismatch cleavage step (EMC) following gene assembly. Functional and sequence analysis of resulting artificial genes revealed that number of deletions, insertions and substitutions was strongly reduced when T7 endonuclease I was used for mutation removal. This method diminished mutation frequency by eightfold relative to gene synthesis not incorporating an error correction step. Overall, EMC using T7 endonuclease I improved the population of error-free synthetic genes, resulting in an error frequency of 0.43 errors per 1 kb. Taken together, data presented here reveal that incorporation of a mutation-removal step including T7 endonuclease I can effectively improve the fidelity of artificial gene synthesis.KeywordsGene synthesisError removalEnzyme mismatch cleavage (EMC)T7 endonuclease I

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700