Haplotype analysis of TLR4 gene and its effects on milk somatic cell score in Chinese commercial cattle
详细信息    查看全文
  • 作者:Xing Ping Wang (1)
    Zhuo Ma Luoreng (1)
    Shu Xin Gao (3)
    Dong Sheng Guo (1)
    Jun Ya Li (2)
    Xue Gao (2)
    Shang Zhong Xu (2)
    Feng Li (1)
    Gang Chen (1)
    Jin Ren Wang (1)
  • 关键词:Dairy cattle ; Mastitis ; Toll ; like receptor 4 ; Haplotype ; Single nucleotide polymorphism ; Somatic cell score
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:41
  • 期:4
  • 页码:2345-2351
  • 全文大小:469 KB
  • 参考文献:1. Janzen JJ (1970) Economic losses resulting from mastitis, a review. J Dairy Sci 53:1151-161 CrossRef
    2. Lescourret F, Coulon JB (1994) Modeling the impact of mastitis on milk production by dairy cows. J Dairy Sci 77:2289-301 CrossRef
    3. Nash DL, Rogers GW, Cooper JB, Hargrove GL, Keown JF (2003) Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J Dairy Sci 86:2684-695 CrossRef
    4. Ruegg PL (2003) Investigation of mastitis problems on farms. Vet Clin North Am Food Anim Pract 19:47-3 CrossRef
    5. Mrode RA, Swanson GJT (1996) Genetic and statistical properties of somatic cell count and its suitability as an indirect means of reducing the incidence of mastitis in dairy cattle. Anim Breed Abstr 64:847-57
    6. Coffey EM, Vinson WE, Pearson RE (1986) Potential of somatic cell concentration in milk as a sire selection criterion to reduce mastitis in dairy cattle. J Dairy Sci 69:2163-172 CrossRef
    7. Emanuelson U, Danell B, Philipsson J (1988) Genetic parameters for clinical mastitis, somatic cell counts and milk production estimated by multiple-trait restricted maximum likelihood. J Dairy Sci 71:467-76 CrossRef
    8. Philipsson J, Ral G, Berglund B (1995) Somatic cell count as a selection criterion for mastitis resistance in dairy cattle. Livest Prod Sci 41:195-00 CrossRef
    9. Schutz MM (1994) Genetic evaluation of somatic cell scores for United States dairy cattle. J Dairy Sci 77:2113-129 CrossRef
    10. Carlen E, Strandberg E, Roth A (2004) Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. J Dairy Sci 87:3062-070 CrossRef
    11. Heringstad B, Gianola D, Chang YM, Odegard J, Klemetsdal G (2006) Genetic associations between clinical mastitis and somatic cell score in early first-lactation cows. J Dairy Sci 89:2236-244 CrossRef
    12. Chu MX, Ye SC, Qiao L, Wang JX, Feng T, Huang DW, Cao GL, Di R, Fang L, Chen GH (2012) Polymorphism of exon 2 of BoLA-DRB3 gene and its relationship with somatic cell score in Beijing Holstein cows. Mol Biol Rep 39:2909-914 CrossRef
    13. Hogan JS, Smith KL, Hoblet KH, Schoenberger PS, Todhunter DA, Hueston WD, Pritchard DE, Bowman GL, Heider LE, Brockett BL, Conrad HR (1989) Field survey of clinical mastitis in low somatic cell count herds. J Dairy Sci 72:1547-556 CrossRef
    14. Lahouassa H, Moussay E, Rainard P, Riollet C (2007) Differential cytokine and chemokine responses of bovine mammary epithelial cells to / Staphylococcus aureus and / Escherichia coli. Cytokine 38:12-1 CrossRef
    15. Yuan Z, Li J, Li J, Gao X, Xu S (2013) SNPs identification and its correlation analysis with milk somatic cell score in bovine / MBL1 gene. Mol Biol Rep 40(1):7-2 CrossRef
    16. Oviedo-Boyso J, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa A, Lopez-Meza JE, Bravo-Patino A, Baizabal-Aguirre VM (2007) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54:399-09 CrossRef
    17. Beecher C, Daly M, Childs S, Berry DP, Magee DA, McCarthy TV, Giblin L (2010) Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle. BMC Genet 11:99 CrossRef
    18. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499-11 CrossRef
    19. White SN, Kata SR, Womack JE (2003) Comparative fine maps of bovine toll-like receptor 4 and toll-like receptor 2 regions. Mamm Genome 14(2):149-55 CrossRef
    20. McGuire K, Jones M, Werling D, Williams JL, Glass EJ, Jann O (2006) Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors. Anim Genet 37:47-0 CrossRef
    21. Ogorevc J, Kunej T, Razpet A, Dovc P (2009) Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 40(6):832-51 CrossRef
    22. Sharma BS, Leyva I, Schenkel F, Karrow NA (2006) Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls. J Dairy Sci 89(9):3626-635 CrossRef
    23. Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C (2008) Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J Dairy Sci 91(10):4028-036 CrossRef
    24. Wang XP, Xu SZ, Ma TH, Gao X, Ren HY, Chen JB (2006) Genetic variation in the 5-flanking region of bovine / TLR4 gene and correlation with mastitis. Yi Chuan 28(12):1520-524 (in Chinese) CrossRef
    25. Wang X, Xu S, Gao X, Ren H, Chen J (2007) Genetic polymorphism of / TLR4 gene and correlation with mastitis in cattle. J Genet Genomics 34(5):406-12 CrossRef
    26. Wang X, Xu S, Gao X, Li J, Ren H, Luoreng Z, J Chen (2008) Cloning and SNP screening of the TLR4 gene and the association between its polymorphism and somatic cell score in dairy cattle. S Afr J Anim Sci 38:101-09
    27. Joseph S, David WR (2002) Molecular cloning: a laboratory manual (translated by Huang PT), 3rd edn. Science Press, Beijing, pp 516-88
    28. Rupp R, Boichard D (1999) Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J Dairy Sci 82:2198-204 CrossRef
    29. Yeh FC, Yang RC, Boyle T (1999) POPGENE Version 1.31, Microsoft window-based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research, Edmonton
    30. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263-65 CrossRef
    31. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97-8 CrossRef
    32. Tregouet DA, Garelle V (2007) A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics 23:1038-039 CrossRef
    33. Balam-Ortiz E, Esquivel-Villarreal A, Alfaro-Ruiz L, Carrillo K, Elizalde A, Gil T, Urushihara M, Kobori H, Jimenez-Sanchez G (2011) Variants and haplotypes in angiotensinogen gene are associated with plasmatic angiotensinogen level in Mexican population. Am J Med Sci 342(3):205-11 CrossRef
    34. SAS Institute (1999) Statistical analysis systems user’s guide (version 8). SAS Institute Inc, Cary
    35. Alain K, Karrow NA, Thibault C, St-Pierre J, Lessard M, Bissonnette N (2009) Osteopontin: an early innate immune marker of / Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC Genom 10:444 CrossRef
    36. Yuan Z, Chu G, Dan Y, Li J, Zhang L, Gao X, Gao H, Li J, Xu S, Liu Z (2012) / BRCA1: a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score. Mol Biol Rep 39(6):6625-631 CrossRef
    37. Yuan Z, Li J, Li J, Zhang L, Gao X, Gao HJ, Xu S (2012) Investigation on / BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene 505(1):190-94 CrossRef
  • 作者单位:Xing Ping Wang (1)
    Zhuo Ma Luoreng (1)
    Shu Xin Gao (3)
    Dong Sheng Guo (1)
    Jun Ya Li (2)
    Xue Gao (2)
    Shang Zhong Xu (2)
    Feng Li (1)
    Gang Chen (1)
    Jin Ren Wang (1)

    1. Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, 415000, People’s Republic of China
    3. College of Animal Science and Technology, Inner Mongolia University for Nationality, Tongliao, 028000, People’s Republic of China
    2. Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People’s Republic of China
  • ISSN:1573-4978
文摘
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine TLR4 was taken as a candidate gene for mastitis resistance. This study aimed to analyze the associations of single nucleotide polymorphisms (SNP) or haplotype and somatic cell score (SCS) in 404 Chinese commercial dairy cattle including Chinese Holstein, Sanhe cattle and Chinese Simmental breeds. The polymerase chain reaction and sequencing methods were used for detecting genotype and allele frequency distribution of the two SNPs (rs8193062, rs8193064), statistical results showed that T allele at rs8193062 and C allele at rs8193064 were the predominate alleles. Moreover, six SNPs, including two SNPs (rs8193062, rs8193064) and four SNPs (rs8193060, rs8193069, rs29017188, rs8193046) which were chosen according the polymorphism level for the same cattle populations in previous studies, were used for haplotype analysis, the results revealed that twenty-one haplotypes were found in the mentioned animals, of which, Hap1 (30.5?%) and Hap2 (30.4?%) were the most common haplotypes. Hap2, Hap4 and Hap12 might negatively effect on milk SCS, whereas Hap13 might positively effect on milk SCS. The results in this study might assist in marker assisted selection and provided some reference to be implemented in breeding programs to improve the mastitis resistance of dairy cattle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700