Small RNAs in pollen
详细信息    查看全文
  • 作者:Hui He (1)
    TianYu Yang (1)
    WenYe Wu (1)
    BingLian Zheng (1)

    1. State Key Laboratory of Genetic Engineering
    ; Collaborative Innovation Center for Genetics and Development ; Institute of Plant Biology ; School of Life Sciences ; Fudan University ; Shanghai ; 200438 ; China
  • 关键词:vegetative cell ; sperm cell ; easiRNA ; transposable elements
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:246-252
  • 全文大小:655 KB
  • 参考文献:1. McCormick, S (2004) Control of male gametophyte development. Plant Cell 16: pp. S142-153 CrossRef
    2. Eady, C, Lindsey, K, Twell, D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7: pp. 65-74 CrossRef
    3. Borg, M, Twell, D (2010) Life after meiosis: patterning the angiosperm male gametophyte. Biochem Soc Trans 38: pp. 577-582 CrossRef
    4. Rotman, N, Durbarry, A, Wardle, A, Yang, WC, Chaboud, A, Faure, JE, Berger, F, Twell, D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15: pp. 244-248 CrossRef
    5. Brownfield, L, Hafidh, S, Borg, M, Sidorova, A, Mori, T, Twell, D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5: pp. e1000430 CrossRef
    6. Borg, M, Brownfield, L, Khatab, H, Sidorova, A, Lingaya, M, Twell, D (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23: pp. 534-549 CrossRef
    7. Zheng, B, He, H, Zheng, Y, Wu, W, McCormick, S (2014) An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet 10: pp. e1004421 CrossRef
    8. Rogers, K, Chen, X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25: pp. 2383-2399 CrossRef
    9. Allen, E, Xie, Z, Gustafson, AM, Carrington, JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: pp. 207-221 cell.2005.04.004" target="_blank" title="It opens in new window">CrossRef
    10. Jin, H, Vacic, V, Girke, T, Lonardi, S, Zhu, JK (2008) Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol 9: pp. 6 CrossRef
    11. Matzke, MA, Mosher, RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15: pp. 394-408 CrossRef
    12. Grant-Downton, R, Hafidh, S, Twell, D, Dickinson, H (2009) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2: pp. 500-512 CrossRef
    13. Chambers, C, Shuai, B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9: pp. 87 CrossRef
    14. Grant-Downton, R, Trionnaire, G, Schmid, R, Rodriguez-Enriquez, J, Hafidh, S, Mehdi, S, Twell, D, Dickinson, H (2009) microRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genomics 10: pp. 643 CrossRef
    15. Slotkin, RK, Vaughn, M, Borges, F, Tanurdzic, M, Becker, JD, Feijo, JA, Martienssen, RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136: pp. 461-472 cell.2008.12.038" target="_blank" title="It opens in new window">CrossRef
    16. Borges, F, Pereira, PA, Slotkin, RK, Martienssen, RA, Becker, JD (2011) microRNA activity in the Arabidopsis male germline. J Exp Bot 62: pp. 1611-1620 CrossRef
    17. Calarco, JP, Borges, F, Donoghue, MT, Ex, F, Jullien, PE, Lopes, T, Gardner, R, Berger, F, Feijo, JA, Becker, JD, Martienssen, RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151: pp. 194-205 cell.2012.09.001" target="_blank" title="It opens in new window">CrossRef
    18. Creasey, KM, Zhai, J, Borges, F, Ex, F, Regulski, M, Meyers, BC, Martienssen, RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508: pp. 411-415 CrossRef
    19. Li, J, Wu, Y, Qi, Y (2014) MicroRNAs in a multicellular green alga Volvox carteri. Sci China Life Sci 1: pp. 36-45 CrossRef
    20. Borges, F, Gomes, G, Gardner, R, Moreno, N, McCormick, S, Feijo, JA, Becker, JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148: pp. 1168-1181 CrossRef
    21. Mi, S, Cai, T, Hu, Y, Chen, Y, Hodges, E, Ni, F, Wu, L, Li, S, Zhou, H, Long, C, Chen, S, Hannon, GJ, Qi, Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5鈥?terminal nucleotide. Cell 133: pp. 116-127 cell.2008.02.034" target="_blank" title="It opens in new window">CrossRef
    22. Grant-Downton, R, Kourmpetli, S, Hafidh, S, Khatab, H, Trionnaire, G, Dickinson, H, Twell, D (2013) Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Curr Biol 23: pp. R599-601 CrossRef
    23. Brosnan, CA, Voinnet, O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14: pp. 580-587 CrossRef
    24. Marin-Gonzalez, E, Suarez-Lopez, P (2012) 鈥淎nd yet it moves鈥? cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci 196: pp. 18-30 CrossRef
    25. Ron, M, Alandete Saez, M, Eshed Williams, L, Fletcher, JC, McCormick, S (2010) Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 24: pp. 1010-1021 CrossRef
    26. Fu, Q, Wang, PJ (2014) Mammalian piRNAs: Biogenesis, function, and mysteries. Spermatogenesis 4: pp. e27889 CrossRef
    27. Lippman, Z, May, B, Yordan, C, Singer, T, Martienssen, R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1: pp. e67 CrossRef
    28. McCue, AD, Nuthikattu, S, Slotkin, RK (2013) Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 10: pp. 1379-1395 CrossRef
    29. Nuthikattu, S, McCue, AD, Panda, K, Fultz, D, DeFraia, C, Thomas, EN, Slotkin, RK (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21鈥?2 nucleotide small interfering RNAs. Plant Physiol 162: pp. 116-131 CrossRef
    30. Song, X, Li, P, Zhai, J, Zhou, M, Ma, L, Liu, B, Jeong, DH, Nakano, M, Cao, S, Liu, C, Chu, C, Wang, XJ, Green, PJ, Meyers, BC, Cao, X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69: pp. 462-474 CrossRef
    31. Fei, Q, Xia, R, Meyers, BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25: pp. 2400-2415 CrossRef
    32. Saze, H, Kakutani, T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26: pp. 3641-3652 CrossRef
    33. Sarazin, A, Voinnet, O (2014) Exploring new models of easiRNA biogenesis. Nat Genet 46: pp. 530-531 CrossRef
    34. McCue, AD, Nuthikattu, S, Reeder, SH, Slotkin, RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 8: pp. e1002474 CrossRef
    35. Scarpin, R, Sigaut, L, Pietrasanta, L, McCormick, S, Zheng, B, Muschietti, J (2013) Cajal Bodies are developmentally regulated during pollen development and pollen tube growth in Arabidopsis thaliana. Mol Plant 6: pp. 1355-1357 CrossRef
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
In plants, each pollen mother cell undergoes two rounds of cell divisions to form a mature pollen grain, which contains a vegetative cell (VC) and two sperm cells (SC). As a companion cell, the VC carries the SCs to an ovule by germinating a pollen tube. In-depth sequencing analyses of mature pollen showed that microRNAs (miRNAs) and short interfering RNAs (siRNAs) are present in both the VC and SCs. Additionally, epigenetically-regulated transposable elements (TEs) are reactivated in the VC and these TE mRNAs are further processed into 21-nt epigenetically reactivated siRNA (easiRNA) in SCs, which prevent 24-nt siRNA accumulation and sequester miRNA loading. Small RNAs are thought to move from the VC to SCs, where they regulate gene expression and reinforce TE silencing. Here, we summarize current knowledge of the biogenesis and function of miRNAs, siRNAs, and easiRNAs in pollen, emphasizing how these different small RNAs coordinately contribute to sperm cell formation and TE silencing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700