Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death
详细信息    查看全文
  • 作者:Stefan Pittner ; Fabio C. Monticelli…
  • 关键词:Postmortem interval (PMI) ; Protein ; Degradation ; Skeletal muscle ; Pig
  • 刊名:International Journal of Legal Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:130
  • 期:2
  • 页码:421-431
  • 全文大小:1,072 KB
  • 参考文献:1.Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165:182–184CrossRef PubMed
    2.Madea B (1994) Importance of supravitality in forensic medicine. Forensic Sci Int 69:221–241CrossRef PubMed
    3.Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113:303–319CrossRef PubMed
    4.Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Legal Med 113:320–331CrossRef PubMed
    5.Muñoz Barús JI, Suárez-Peñaranda J, Otero XL, Rodríguez-Calvo MS, Costas E, Miguéns X, Concheiro L (2002) Improved estimation of postmortem interval based on differential behaviour of vitreous potassium and hypoxantine in death by hanging. Forensic Sci Int 125:67–74CrossRef PubMed
    6.Jackson ARW, Jackson JM (2011) Forensic science.In: Pearson Education Limited, 3rd edn. pp 376–381
    7.Kimura A, Ishida Y, Hayashi T, Nosaka M, Kondo T (2010) Estimating time of death based on the biological clock. Int J Legal Med 125:385–391CrossRef PubMed
    8.Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392CrossRef PubMed
    9.Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D, Keepers K, Guo Y, Bullard J, Fierer N, Carter DO, Knight R (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. elife 2(e01104):1–19
    10.Young ST, Wells JD, Hobbs GR, Bishop CP et al (2013) Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int 229:163.e1–163.e6CrossRef
    11.Itani M, Yamamoto Y, Doi Y, Miyaishi S (2011) Quantitative analysis of DNA degradation in the dead body. Acta Med Okayama 65:299–306PubMed
    12.Alibegović A (2014) Cartilage: a new parameter for the determination of the postmortem interval? J Forensic Legal Med 27:39–45CrossRef
    13.Tomita Y, Nihira M, Ohno Y, Sato S (2004) Ultrastructural changes during in situ early postmortem autolysis in kidney, pancreas, liver, heart and skeletal muscle of rats. Legal Med 6:25–31CrossRef PubMed
    14.Collan Y, Salmenperä M (1976) Electron microscopy of postmortem autolysis of rat muscle tissue. Acta Neuropathol 35:219–233PubMed
    15.Tokunaga I, Takeichi S, Yamamoto A, Gotoda M, Maeiwa M (1993) Comparison of postmortem autolysis in cardiac and skeletal muscle. J Forensic Sci 38:1187–1193CrossRef PubMed
    16.Kang S, Kassam N, Gauthier ML, O'Day DH (2003) Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci Int 131:140–147CrossRef PubMed
    17.Poloz YO, O'Day DH (2009) Determining time of death: temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med 123:305–314CrossRef PubMed
    18.Sanoudou D, Kang PB, Haslett JN, Han M, Kunkel LM, Beggs AH (2004) Transcriptional profile of postmortem skeletal muscle. Physiol Genomics 16:222–228CrossRef PubMed
    19.Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE (1995) Is Z-disk degradation responsible for postmortem tenderization? J Anim Sci 73:1351–1367PubMed
    20.Huff-Lonergan E, Mitsuhashi T, Beekman DD, Parrish FC Jr, Olson DG, Robson RM (1996) Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J Anim Sci 74:993–1008PubMed
    21.Huff-Lonergan E, Mitsuhashi T, Parrish FC Jr, Robson RM (1996) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting comparisons of purified myofibrils and whole muscle preparations for evaluating titin and nebulin in postmortem bovine muscle. J Anim Sci 74:779–785PubMed
    22.Tomaszewska-Gras J, Kijowski J, Schreurs FJ (2002) Quantitative determination of titin and nebulin in poultry meat by SDS-PAGE with an internal standard. Meat Sci 62:61–66CrossRef PubMed
    23.Szalata M, Pospiech E, Greaser ML, Lyczynski A, Grzes B, Mikolajczak B (2005) Titin and troponin T changes in relation to tenderness of meat from pigs of various meatiness. Pol J Food Nutr Sci 14:139–144
    24.Wu G, Clerens S, Farouk MM (2014) LC MS/MS identification of large structural proteins from bull muscle and their degradation products during post mortem storage. Food Chem 150:137–144CrossRef PubMed
    25.Wu G, Farouk MM, Clerens S, Rosenvold K (2014) Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci 98:637–645CrossRef PubMed
    26.Tomaszewska-Gras J, Schreurs FJ, Kijowski J (2011) Post mortem development of meat quality as related to changes in cytoskeletal proteins of chicken muscles. Br Poult Sci 52:189–201CrossRef PubMed
    27.Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E (2004) Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J Anim Sci 82:1195–1205PubMed
    28.Matsuura T, Kimura S, Ohtsuka S, Maruyama K (1991) Isolation and characterization of 1,200 kDa peptide of alpha-connectin. J Biochem 110:474–478PubMed
    29.Warren CM, Krzesinski PR, Greaser ML (2003) Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 24:1695–1702CrossRef PubMed
    30.Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74:34–43CrossRef PubMed
    31.Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801CrossRef PubMed
    32.Pomponio L, Ertbjerg P (2012) The effect of temperature on the activity of μ- and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Sci 91:50–55CrossRef PubMed
    33.Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRef PubMed
    34.Raser KJ, Posner A, Wang KK (1995) Casein zymography: a method to study mu-calpain, m-calpain, and their inhibitory agents. Arch Biochem Biophys 319:211–216CrossRef PubMed
    35.Meyer LC, Wright NT (2013) Structure of giant muscle proteins. Physiol 4 Article 368:1–12
    36.Huff Lonergan E, Zhang W, Lonergan SM (2010) Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat Sci 86:184–195CrossRef PubMed
    37.Ho CY, Stromer MH, Rouse G, Robson RM (1997) Effects of electrical stimulation and postmortem storage on changes in titin, nebulin, desmin, troponin-T, and muscle ultrastructure in Bos indicus crossbred cattle. J Anim Sci 75:366–376PubMed
    38.Geesink GH, Bekhit AD, Bickerstaffe R (2000) Rigor temperature and meat quality characteristics of lamb longissimus muscle. J Anim Sci 78:2842–2848PubMed
    39.Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME (1995) A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J Anim Sci 73:3596–3607PubMed
    40.Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E (2004) Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain. J Anim Sci 82:3254–3266PubMed
    41.Zhang WG, Lonergan SM, Gardner MA, Huff-Lonergan E (2006) Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork. Meat Sci 74:578–585CrossRef PubMed
    42.Geesink GH, Koohmaraie M (1999) Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. J Anim Sci 77:1490–1501PubMed
    43.Baron CP, Jacobsen S, Purslow PP (2004) Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Sci 68:447–456CrossRef PubMed
    44.Bodor GS, Survant L, Voss EM, Smith S, Porterfield D, Apple FS (1997) Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem 43:476–484PubMed
    45.Veiseth E, Shackelford SD, Wheeler TL, Koohmaraie M (2001) Effect of postmortem storage on μ-calpain and m-calpain in ovine skeletal muscle. J Anim Sci 79:1502–1508PubMed
    46.Boehm ML, Kendall TL, Thompson VF, Goll DE (1998) Changes in the calpains and calpastatin during postmortem storage of bovine muscle. J Anim Sci 76:2415–2434PubMed
  • 作者单位:Stefan Pittner (1)
    Fabio C. Monticelli (2)
    Alexander Pfisterer (1)
    Angela Zissler (1)
    Alexandra M. Sänger (1)
    Walter Stoiber (1)
    Peter Steinbacher (1)

    1. Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
    2. Department of Forensic Medicine and Forensic Neuropsychiatry, University of Salzburg, Ignaz-Harrer-Straße 79, 5020, Salzburg, Austria
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Forensic Medicine
    Medical Law
    Medicine/Public Health, general
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1437-1596
文摘
Estimating the time since death is a very important aspect in forensic sciences which is pursued by a variety of methods. The most precise method to determine the postmortem interval (PMI) is the temperature method which is based on the decrease of the body core temperature from 37 °C. However, this method is only useful in the early postmortem phase (~0–36 h). The aim of the present work is to develop an accurate method for PMI determination beyond this present limit. For this purpose, we used sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and casein zymography to analyze the time course of degradation of selected proteins and calpain activity in porcine biceps femoris muscle until 240 h postmortem (hpm). Our results demonstrate that titin, nebulin, desmin, cardiac troponin T, and SERCA1 degraded in a regular and predictable fashion in all samples investigated. Similarly, both the native calpain 1 and calpain 2 bands disintegrate into two bands subsequently. This degradation behavior identifies muscular proteins and enzymes as promising substrates for future molecular-based PMI determination technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700