Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art
详细信息    查看全文
  • 作者:J. Michael Randall (1)
    Frederick Millard (1)
    Razelle Kurzrock (1)
  • 关键词:Renal cell carcinoma ; Targeted therapy ; Molecular aberrations ; Investigational agents ; Prognostic markers
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:33
  • 期:4
  • 页码:1109-1124
  • 全文大小:601 KB
  • 参考文献:1. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. / CA: A Cancer Journal for Clinicians, 62, 10-9.
    2. Cohen, H. T., & McGovern, F. (2005). Renal-cell carcinoma. / New England Journal of Medicine, 353, 2477-490.
    3. Lopez-Beltran, A., Carrasco, J. C., Cheng, L., Scarpelli, M., Kirkali, Z., & Montironi, R. (2009). 2009 update on the classification of renal epithelial tumors in adults. / International Journal of Urology, 16, 432-43.
    4. Albiges, L., Molinie, V., & Escudier, B. (2012). Non-clear cell renal cell carcinoma: does the mammalian target of rapamycin represent a rational therapeutic target? / The Oncologist, 17, 1051-062.
    5. Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. / Lancet, 373, 1119-132.
    6. Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., et al. (2011). COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. / Nucleic Acids Research, 39, D945–D950. doi:10.1093/nar/gkq929 .
    7. Nickerson, M. L., Jaeger, E., Yangu, S., Dorocher, J. A., Mahurakar, S., Zaridze, D., et al. (2008). Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. / Clinical Cancer Research, 14, 4726-734.
    8. Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. / Journal of Clinical Oncology, 22, 4991-004.
    9. Varela, I., Tarpey, P., Raine, K., Huang, D., Ong, C. K., Stephens, P., et al. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal cell carcinoma. / Nature, 469, 539-42.
    10. Duns, G., Hofstra, R. M., Sietzema, J. G., Hollema, H., vanDuivenbode, I., Kuik, A., et al. (2012). Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. / Human Mutation, 33, 1059-062.
    11. Hakimi, A. A., Ostrovnaya, I., Reva, B., Schultz, N., Chen, Y.-B., Gonen, M., et al. (2013). Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. / Clinical Cancer Research. doi:10.1158/1078-0432.CCR-12-3886 .
    12. Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavia-Jimenez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. / Nature Genetics, 44, 751-59.
    13. Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. / Nature, 463, 360-63.
    14. Hakimi, A. A., Chen, Y.-B., Wren, J., Gonen, M., Abdel-Wahab, O., Heguy, A., et al. (2013). Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. / European Urology, 63, 848-54.
    15. Duns, G., van den Berg, E., van Duivenbode, I., Osinga, J., Hollema, H., Hofstra, R. M., et al. (2010). Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. / Cancer Research, 70, 4287-291.
    16. Guo, G., Gui, Y., Gao, S., Tang, A., Hu, X., Huang, Y., et al. (2012). Frequent mutation of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. / Nature Genetics, 44, 17-9.
    17. Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S., et al. (2007). Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. / Development, 134, 901-08.
    18. Muller, P. A. J., & Vousden, K. H. (2013). p53 mutations in cancer. / Nature Cell Biology, 15, 2-.
    19. Niu, X., Zhang, T., Liao, L., Zhou, L., Linder, D., Zhou, M., et al. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. / Oncogene, 31, 776-86.
    20. Li, W.-D., Li, Q. R., Xu, S. N., Wei, F. J., Ye, Z. J., Cheng, J. K., et al. (2013). Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. / Blood, 121, 1478-479.
    21. Liu, P., Morrison, C., Wang, L., Xiong, D., Vedell, P., Cui, P., et al. (2012). Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. / Carcinogenesis, 33, 1270-276.
    22. Mayers, C. M., Wadell, J., McLean, K., Venere, M., Malik, M., Shibata, T., et al. (2010). The rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. / Journal of Biological Chemistry, 285, 12344-2354.
    23. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., et al. (2012). Single-cell exome sequencing reveals single nucleotide mutation characteristics of a kidney tumor. / Cell, 148, 886-95.
    24. Shankar, J., Messenberg, A., Chan,
  • 作者单位:J. Michael Randall (1)
    Frederick Millard (1)
    Razelle Kurzrock (1)

    1. Department of Medicine, Division of Hematology/Oncology, UCSD Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, #0987, La Jolla, CA, 92093-987, USA
  • ISSN:1573-7233
文摘
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-?% of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700