Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels
详细信息    查看全文
文摘
This paper examines the nanoparticle (NP) influence on energy storage and dissipation in hydrogel nanocomposites (HNCs). To obtain fundamental insights into mechanical enhancement, a model system involving the in situ free-radical polymerization of acrylamide with bis-acrylamide (bis) and silica NPs is adopted. The loss tangents of the unmodified polymer networks span three orders of magnitude, and the weak attraction between silica and poly(acrylamide) (PA)—as compared to composites with a stronger NP-polymer interaction—makes these HNCs particularly sensitive to systematic variations in (i) NP size and concentration and (ii) monomer and crosslinker concentrations. From the dynamic shear moduli during polymerization, and their spectra at steady-state, silica NPs in PA behave as multi-functional, physical crosslinking centers that increase the storage modulus, particularly in very weakly bis-crosslinked PA (in which NP aggregates are proposed to form elastically effective clusters). The loss modulus for HNCs reflects adsorption/desorption and friction at the NP surfaces, varying with the NP, monomer and crosslinker concentrations. Silica NPs were also found to slow the polymerization and crosslinking of acrylamide according to the specific NP surface area (set by the NP size and concentration), suggesting that silica NPs reduce the free-radical concentration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700