Genetics, realized heritability and preliminary mechanism of spinosad resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): an invasive pest from Pakistan
详细信息    查看全文
  • 作者:Muhammad Babar Shahzad Afzal ; Sarfraz Ali Shad ; Naeem Abbas
  • 关键词:Mealybug ; Resistance ; Autosomal ; Multiple factors ; Synergism ; Esterases
  • 刊名:Genetica
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:143
  • 期:6
  • 页码:741-749
  • 全文大小:426 KB
  • 参考文献:Abbas G, Arif MJ, Ashfaq M, Aslam M, Saeed S (2010) Host plants, distribution and overwintering of cotton mealybug (Phenacoccus solenopsis; Hemiptera: Pseudococcidae). Int J Agric Biol 12:421鈥?25
    Abbas N, Khan HAA, Shad SA (2014a) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113:1343鈥?352CrossRef PubMed
    Abbas N, Khan HAA, Shad SA (2014b) Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicol 23:791鈥?01CrossRef
    Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265鈥?67CrossRef
    Afzal MBS, Shad SA (2015) Resistance inheritance and mechanism to emamectin benzoate in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Crop Prot 71:60鈥?5CrossRef
    Afzal MBS, Shad SA, Abbas N, Ayyaz M, Walker WB (2015) Cross resistance, stability of resistance and effect of acetamiprid on biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae) in Pakistan. Pest Manag Sci 71:151鈥?58CrossRef PubMed
    Arif MI, Rafiq M, Ghaffar A (2009) Host plants of cotton mealybug (Phenacoccus solenopsis): a new menace to cotton agro-ecosystem of Punjab. Int J Agric Biol 11:163鈥?67
    Ben-Dov Y, Miller DR, Gibson GAP (2009) ScaleNet: a searchable information system on scale insects. http://鈥媤ww.鈥媠el.鈥媌arc.鈥媢sda.鈥媑ov/鈥媠calenet/鈥媠calenet.鈥媓tm . Accessed 8 Aug 2009
    Bielza P, Quinto V, Contreras J, Torne M, Martin A, Espinosa PJ (2007a) Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Manag Sci 63:682鈥?87CrossRef PubMed
    Bielza P, Quinto V, Fernandez E, Gravalos C, Contreras J (2007b) Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 100:916鈥?20CrossRef PubMed
    Bourguet D, Raymond M (1998) The molecular basis of dominance relationships: the case of some recent adaptive genes. J Evol Biol 11:103鈥?22CrossRef
    Bourguet D, Genissel A, Raymond M (2000) Insecticide resistance and dominance levels. J Econ Entomol 93:1588鈥?595CrossRef PubMed
    Bouvier JC, Bu猫s R, Boivin T, Boudinhon L, Beslay D, Sauphanor B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae) inheritance and number of genes involved. Heredity 87:456鈥?62
    Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD (1997) Biological properties of spinosad. Down Earth 52:6
    Chilcutt CF, Tabashnik BE (1995) Evaluation of pesticide resistance and slope of the concentration-mortality line: are they related? J Econ Entomol 88:11鈥?0CrossRef
    David PMM, Rajkumar K, Elanchezhyan K, Razak TA, Nelson SJ, Nainar P, Muralibaskaran RK, Rajavel DS (2010) Efficacy of castor oil-based soft soaps against cotton mealy bug, Phenacoccus solenopsis Tinsley on brinjal. Karnataka J Agric Sci 23:169鈥?70
    Ffrench-Constant RH, Daborn PJ, Goff GL (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163鈥?70CrossRef PubMed
    Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, UK, p 333
    Georghiou GP (1969) Genetics of resistance to insecticides in house flies and mosquitoes. Exp Parasitol 26:224鈥?55CrossRef PubMed
    Georghiou GP (1983) Management of resistance in arthropods. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum, New York, pp 769鈥?92CrossRef
    Hodgson CJ, Abbas G, Arif MJ, Saeed S, Karar H (2008) Phenacoccus solenopsis Tinsley (Sternorrhyncha: Coccoidea: Pseudococcidae), an invasive mealybug damaging cotton in Pakistan and India, with a discussion on seasonal morphological variation. Zootaxa 1913:1鈥?5
    Hoskins WM (1960) Use of the dosage mortality curve in quantitative estimation of insecticide resistance. Entomol Soc Am 2:85鈥?1
    Jones T, Scott-Dupree C, Harris R, Shipp L, Harris B (2005) The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario. Pest Manag Sci 61:179鈥?85CrossRef PubMed
    Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalomc FG, Mathiopoulos KD (2010) Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. Pest Manag Sci 66:447鈥?53PubMed
    Khan HAA, Akram W, Shad SA (2014) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 130:148鈥?54CrossRef
    Klerks PL, Xie L, Levinton JS (2011) Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance. Ecotoxicol 20:513鈥?23CrossRef
    Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541鈥?53PubMedCentral PubMed
    Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Theory 99:99鈥?03
    Liu N, Yue X (2000) Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93:1269鈥?275CrossRef PubMed
    McKenzie JA, Anthony G, Parker AG, Janet L, Yen JL (1992) Polygenic and single gene responses to selection for resistance to Diazinon in Lucilia cuprina. Genetics 130:613鈥?20PubMedCentral PubMed
    Rehan A, Fareed S (2014) Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Prot 56:10鈥?5CrossRef
    Roush RT (1998) Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? In: Royal-Society discussion meeting on insecticide resistance鈥攆rom mechanisms to management, London, pp 1777鈥?786
    Roush RT, Daly JC (1990) The role of population genetics in resistance research and management. In: Roush RT, Tabashnik BE (eds) Pesticide Resistance in Arthropods. Chapman and Hall, New York, pp 97鈥?52
    Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361鈥?80CrossRef PubMed
    Salgado VL (1997) The modes of action of spinosad and other insect control products. Down Earth 52:35
    Salgado VL (1998) Studies on mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91鈥?02CrossRef
    Sayyed AH, Omar D, Wright DJ (2004) Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella. Pest Manag Sci 60:827鈥?32CrossRef PubMed
    Sayyed AM, Attique MNR, Khaliq A, Wright DJ (2005) Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Manag Sci 61:636鈥?42CrossRef PubMed
    Sayyed AH, Saeed S, Noor-ul-ane M, Crickmore N (2008) Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 101:1658鈥?666CrossRef PubMed
    Scott JG (1998) Toxicity of spinosad to susceptible and resistant strains of house flies Musca domestica. Pest Manag Sci 54:131鈥?33CrossRef
    Shad SA, Sayyed AH, Saleem MA (2010) Cross-resistance, mode of inheritance and stability of resistance to emamectin in Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag Sci 66:839鈥?46PubMed
    Shi J, Zhang L, Gao X (2011) Characterization of spinosad resistance in the house fly Musca domestica (Diptera: Muscidae). Pest Manag Sci 67:335鈥?40CrossRef PubMed
    Shono T, Scott JG (2003) Spinosad resistance in the house fly, Musca domestica, is due to a recessive factor on autosome I. Pestic Biochem Physiol 75:1鈥?CrossRef
    Sokal RR, Rohlf FJ (1981) Biometry, 3rd edn. WH Freeman, San Francisco
    Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross resistance to the spinosyns: a review and analysis. Pestic Biochem Physiol 102:1鈥?0CrossRef
    Stone BF (1968) A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull WHO 38:325鈥?26PubMedCentral PubMed
    Su T, Cheng ML (2014) Laboratory selection of resistance to spinosad in Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 51:421鈥?27CrossRef PubMed
    Tabashnik BE (1992) Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551鈥?559CrossRef
    Tabashnik BE, Mcgaughey WH (1994) Resistance risk assessment for single and multiple insecticides: responses of Indian meal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J Econ Entomol 87(1994):834鈥?41CrossRef
    Tabashnik BE, Schwartz JM, Finson N, Jhonson MN (1992) Inheritance of resistance to Bacillus thuringiensis in diamond backmoth (Lepidoptera: Plutellidae). J Econ Entomol 85:1046鈥?055CrossRef
    Thompson GD, Sparks TC (2002) Spinosad: a green natural product for insect control. Advancing sustainability through green chemistry and engineering. ACS Symp Ser 823:61鈥?3CrossRef
    Thompson GD, Michel KH, Yao RC, Mynderse JS, Mosburg CT, Worden TV, Chio EH, Sparks TC, Hutchins SH (1997) The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down Earth 52:1鈥?
    Thompson GD, Dutton R, Sparks TC (2000) Spinosad: a case study: an example from a natural product discovery programme. Pest Mang Sci 56:696鈥?02CrossRef
    Wang W, Mo J, Cheng J, Zhuang P, Tang Z (2006) Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pestic Biochem Physiol 84:180鈥?87CrossRef
    Wang D, Qiu X, Ren X, Zhang W, Wang K (2009) Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: tolerance status, synergism and enzymatic responses. Pest Manag Sci 65:1040鈥?046CrossRef PubMed
    Watson GB (2001) Actions of insecticidal spinosyns on 纬-aminobutyric acid responses from small-diameter cockroach neurons. Pestic Biochem Physiol 71:20CrossRef
    Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM, Letherer TJ, Mitchell JC, Pak WL, Salgado VL, Sparks TC, Stilwell GE (2010) A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemical induced target site resistance, resistance gene identification, and heterologous expression. Insect Biochem Mol Biol 40:376鈥?84CrossRef PubMed
    Wyss CF, Young HP, Shukla J, Roe RM (2003) Biology and genetics of laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Prot 22:307鈥?14CrossRef
    Young HP, Bailey WD, Roe RM (2003) Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of resistance. Crop Prot 22:265鈥?73CrossRef
    Zhang SY, Kono S, Murai T, Miyata T (2008) Mechanisms of resistance to spinosad in the western flower thrip, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Insect Sci 15:125鈥?32CrossRef
    Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL, Thompson GD, Shelto AM (2002) Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol 95:430鈥?43CrossRef PubMed
  • 作者单位:Muhammad Babar Shahzad Afzal (1)
    Sarfraz Ali Shad (1)
    Naeem Abbas (1)

    1. Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Animal Genetics and Genomics
    Plant Genetics and Genomics
    Human Genetics
    Microbial Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6857
文摘
The cotton mealybug, Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) has gained recognition as a key pest due to its invasive nature throughout the world. The P. solenopsis has a wide range of host plants and damages the cotton crop in various parts of the world. In view of the economic importance of this pest, a study on selection, inheritance and mechanism of spinosad resistance was conducted on P. solenopsis. Selection of field collected P. solenopsis for seven generations with spinosad resulted in a high resistance ratio of 282.45-fold. Genetic studies of spinosad resistance in P. solenopsis indicated that maternal effects are not involved in spinosad resistance; and resistance development is an autosomal and incompletely dominant trait. The number of genes involved in spinosad resistance was determined to be more than one, suggesting that resistance is controlled by multiple loci. The realized heritability (h 2) value for spinosad resistance was 0.94. Synergism bioassays of spinosad with piperonyl butoxide and S,S,S-tributyl phosphorotrithioate showed that spinosad resistance in P. solenopsis could be due to esterase only. The study provides the basic information for implementation of effective resistance management strategies to control P. solenopsis. Keywords Mealybug Resistance Autosomal Multiple factors Synergism Esterases

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700