Modelling Primary Producers in Some Shallow Spanish Lakes
详细信息    查看全文
  • 作者:Saúl Blanco ; Susana Romo ; Cristina Cejudo-Figueiras ; Joan Gomà…
  • 关键词:Conservation ; Chlorophyll ; a ; Epiphyton ; Macrophytes ; Phytoplankton ; Nutrients
  • 刊名:Wetlands
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:36
  • 期:4
  • 页码:649-658
  • 全文大小:774 KB
  • 参考文献:Allen HL (1971) Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecological Monographs 41:97CrossRef
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46
    Antón B, Romo S, Villena MJ (2013) Diatom species composition and indices for determining the ecological status of coastal Mediterranean Spanish lakes. Anales Jard Bot Madrid 70:122–135CrossRef
    APHA (2009) Standard methods for the examination of water and wastewater. General Books, Washington, p 1129
    Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE (2002) Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470:219–234CrossRef
    Bécares E, Gomá J, Fernández-Aláez M, Fernández-Aláez C, Romo S, Miracle MR, Ståhl-Delbanco A, Hansson L-A, Gyllström M, Bund WJV, de Donk EV, Kairesalo T, Hietala J, Stephen D, Balayla D, Moss B (2008) Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient. Aquatic Ecology 42:561–574CrossRef
    Blanco S, Bécares E (2006) Método de muestreo de diatomeas epífitas en lagunas para la aplicación de la Directiva Marco del Agua. Tecnología del Agua 26:42–47
    Blanco S, Romo S, Villena M-J (2004) Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89:250–262CrossRef
    Blanco S, Romo S, Fernández-Aláez M, Bécares E (2008) Response of epiphytic algae to nutrient loading and fish density in a shallow lake: a mesocosm experiment. Hydrobiologia 600:65–76CrossRef
    Blanco S, Cejudo-Figueiras C, Álvarez-Blanco I, Van Donk E, Gross EM, Hansson L-A, Irvine K, Jeppesen E, Kairesalo T, Moss B, Nõges T, Bécares E (2014) Epiphytic diatoms along environmental gradients in Western European shallow lakes. CLEAN – Soil Air Water 42:229–235CrossRef
    Canfield DE, Shireman JV, Colle DE, Haller WT, Watkins CE II, Maceina MJ (1984) Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41:497–501CrossRef
    Carignan R, Kalff J (1982) Phosphorus release by submerged macrophytes: significance to epiphyton and phytoplankton. Limnology and Oceanography 27:419–427CrossRef
    Cattaneo A, Galanti G, Gentinetta S, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39:725–740CrossRef
    Cejudo-Figueiras C, Álvarez-Blanco I, Bécares E, Blanco S (2010) Epiphytic diatoms and water quality in shallow lakes: the neutral substrate hypothesis revisited. Marine and Freshwater Research 61:1457–1467CrossRef
    Den Hartog C, Segal S (1964) A new classification of the water-plant communities. Acta Botanica Neerlandica 13:367–393CrossRef
    Gross EM (2003) Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22:313–339CrossRef
    Gross EM, Feldbaum C, Graf A (2003) Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506–509:559–565CrossRef
    Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4
    Hansson L-A (1992) Factors regulating periphytic algae biomass. Limnology and Oceanography 37:322–328CrossRef
    Hansson L-A (1996) Algal recruitment from lake sediments in relation to grazing, sinking, and dominance patterns in the phytoplankton community. Limnology and Oceanography 41:1312–1323CrossRef
    ISO (1992) ISO 10260:1992 - Water quality - Measurement of biochemical parameters - Spectrometric determination of the chlorophyll-a concentration
    James C, Fisher J, Russell V, Collings S, Moss B (2005) Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50:1049–1063CrossRef
    Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K (2012) The structuring role of submerged macrophytes in lakes. Springer, New York, p 423
    Jones RC (1984) Application of a primary production model to epiphytic algae in a shallow, eutrophic lake. Ecology 65:1895CrossRef
    Kornijów R (1998) Quantitative sampler for collecting invertebrates associated with submersed and floating-leaved macrophytes. Aquatic Ecology 32:241–244CrossRef
    Kornijów R, Kairesalo T (1994) A simple apparatus for sampling epiphytic communities associated with emergent macrophytes. Hydrobiologia 294:141–143CrossRef
    Kosten S, Lacerot G, Jeppesen E, Marques D, da M, Nes EH, van Mazzeo N, Scheffer M (2009) Effects of submerged vegetation on water clarity across climates. Ecosystems 12:1117–1129CrossRef
    Kosten S, Jeppesen E, Huszar VLM, Van Nes EH, Peeters ETHM, Scheffer M (2011) Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology 56:1540–1553CrossRef
    Lalonde S, Downing JA (1991) Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Canadian Journal of Fisheries and Aquatic Sciences 48:2285–2291CrossRef
    Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam, p 859CrossRef
    Liboriussen L, Jeppesen E (2003) Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48:418–431CrossRef
    Liboriussen L, Jeppesen E (2006) Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51:95–109CrossRef
    Mahdy A (2014) Top-down and bottom-up effects in shallow lake food webs with special emphasis on periphyton. Freie Universität Berlin, Berlin, p 96
    McDougal RL (2002) Algal primary production in prairie wetlands: the effects of nutrients, irradiance, temperature and aquatic macrophytes. Ph. D. Diss. University of Manitoba, Winnipeg, 305 pp
    Miltner RJ, Rankin AET (1998) Primary nutrients and the biotic integrity of rivers and streams. Freshwater Biology 40:145–158CrossRef
    Mitchell SF (1989) Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquatic Botany 33:101–110CrossRef
    Moreno-Madriñán MJ (2010) Analysis of limnological variables associated to water quality in lakes of northwestern Hillsborough County, Florida. The Florida Scientist 73:218–224
    Moss B (1976) The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations: an ecosystem experiment. Journal of Ecology 64:313CrossRef
    Moss B (1981) The composition and ecology of periphyton communities in freshwaters II Inter-relationships between water chemistry, phytoplankton populations and periphyton populations in a shallow lake and associated experimental reservoirs (“Lund tubes”). British Phycological Journal 16:59–76CrossRef
    Moss B, Stephen D, Balayla DM, Bécares E, Collings SE, Fernández-Aláez C, Fernández-Aláez M, Ferriol C, García P, Gomà J, Gyllström M, Hansson LA, Hietala J, Kairesalo T, Miracle MR, Romo S, Rueda J, Russell V, Ståhl-Delbanco A, Svensson M, Vakkilainen K, Valentín M, Van de Bund WJ, Van Donk E, Vicente E, Villena MJ (2004) Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49:1633–1649CrossRef
    Özkan K, Jeppesen E, Johansson LS, Beklioglu M (2010) The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55:463–475CrossRef
    Phillips GL, Eminson D, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4:103–126CrossRef
    Pinto P, O’Farrell I (2014) Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740:13–24
    Pozo R, Fernández-Aláez C, Fernández-Aláez M (2011) The relative importance of natural and anthropogenic effects on community composition of aquatic macrophytes in Mediterranean ponds. Mari Freshwat Res 62(2):101–109
    Romo S, Galanti G (1998) Vertical and seasonal distribution of epiphytic algae on water chestnut (Trapa natans). Archiv fur Hydrobiologie 141:483–504CrossRef
    Romo S, Miracle MR, Villena M-J, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology 49:1593–1607CrossRef
    Romo S, Villena M-J (2005) Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake. Journal of Plankton Research 27:1273–1286CrossRef
    Romo S, Villena M-J, García-Murcia A (2007) Epiphyton, phytoplankton and macrophyte ecology in a shallow lake under in situ experimental conditions. Fundamental and Applied Limnology Archiv fur Hydrobiologie 170:197–209CrossRef
    Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41:137–175CrossRef
    Scheffer M, Hosper SH, Meijer, ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. TREE 8(8):275–279
    Scheffer M, Rinaldi S, Gragnani A, Mur LR, van Nes EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272–282CrossRef
    Ståhl-Delbanco A, Hansson L-A, Gyllström M (2003) Recruitment of resting stages may induce blooms of Microcystis at low N:P ratios. Journal of Plankton Research 25:1099–1106CrossRef
    StatSoft I (2011) STATISTICA for Windows (data analysis software), Version 10.0
    Trigal C, Fernandez-Alaez C, Fernandez-Alaez M (2014) Congruence between functional and taxonomic patterns of benthic and planktonic assemblages in flatland ponds. Aquatic Sciences 76:61–72CrossRef
    Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9:1–38
    Villena M-J, Romo S (2007) Effects of nutrients, fish, charophytes and algal sediment recruitment on the phytoplankton ecology of a shallow lake. International Review of Hydrobiology 92:626–639CrossRef
    Whitley DC, Ford MG, Livingstone DJ (2000) Unsupervised forward selection: a method for eliminating redundant variables. Journal of Chemical Information and Modeling 40:1160–1168
    Zhang Y, Thas O (2012) Constrained ordination analysis in the presence of zero inflation. Statistical Modelling 12:463–485CrossRef
    Zimba PV, Hopson MS (1997) Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquatic Botany 58:173–179CrossRef
  • 作者单位:Saúl Blanco (1)
    Susana Romo (2)
    Cristina Cejudo-Figueiras (1) (3)
    Joan Gomà (4)
    Camino Fernandez-Alaez (5)
    Margarita Fernandez-Alaez (5)

    1. The Institute of the Environment, La Serna, 58, 24007, León, Spain
    2. Department of Ecology, Edificio Investigación, Universitat de València, 46100, Burjasot, Valencia, Spain
    3. Asconit Consultants, Toulouges, France
    4. Faculty of Biology, Department of Ecology, Universitat de Barcelona, Barcelona, Spain
    5. Department of Biodiversity and Environmental Management, University of León, 24071, León, Spain
  • 刊物主题:Freshwater & Marine Ecology; Environmental Management; Ecology; Hydrogeology; Coastal Sciences; Landscape Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1943-6246
  • 卷排序:36
文摘
Increased nutrient loading is regarded as one of the major causes of a shift from macrophyte to phytoplankton dominance in shallow lakes. This work investigates the responses of phytoplankton and epiphyton biomass, macrophytes and algal species assemblages along a trophic gradient in some shallow Mediterranean lakes. A unimodal response of epiphyton biomass to increasing phosphorus levels was observed, while phytoplankton developed exponentially and submerged aquatic plant coverage decreased. At TP levels above 100 μg L−1 (~30 μg-P L−1 by element) phytoplankton began to dominate over the other primary producers and led the system to a turbid state, mainly dominated by cyanobacteria. This could be regarded as a critical threshold to avoid algal turbid states, especially for shallow Mediterranean lakes. Macrophyte typology was also important in modulating this response. On average, the unimodal maximum of epiphyton biomass was about 20 μg g−1 of macrophyte dry weight and hydrophytes had higher epiphytic biomass than helophytes. The coverage of submerged aquatic vegetation was not related to the epiphytic and phytoplanktonic biomass, but to the distribution of their species. Further studies on epiphyton-plant ecology are needed, especially for specific aquatic macrophyte conservation and lake management. Keywords Conservation Chlorophyll-a Epiphyton Macrophytes Phytoplankton Nutrients

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700