Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals
详细信息    查看全文
  • 作者:Guoliang Shang ; Guangtao Fei ; Yue Li ; Lide Zhang
  • 关键词:photonic crystals ; porous materials ; light–mater interaction ; capillary condensation ; nanotechnology
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:703-712
  • 全文大小:2,743 KB
  • 参考文献:[1]Yablonovitch, E. Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062.CrossRef
    [2]John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.CrossRef
    [3]Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.CrossRef
    [4]Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Porous silicon-based optical microsensors for volatile organic analytes: Effect of surface chemistry on stability and specificity. Adv. Funct. Mater. 2010, 20, 2874–2883.CrossRef
    [5]Ko, D. H.; Tumbleston, J. R.; Zhang, L.; Williams, S.; DeSimone, J. M.; Lopez, R.; Samulski, E. T. Photonic crystal geometry for organic solar cells. Nano Lett. 2009, 9, 2742–2746.CrossRef
    [6]Guldin, S.; Hüttner, S.; Kolle, M.; Welland, M. E.; Müller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Tétreault, N. Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 2010, 10, 2303–2309.CrossRef
    [7]Colodrero, S.; Forneli, A.; López-López, C.; Pellejà, L.; Míguez, H.; Palomares, E. Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 2012, 22, 1303–1310.CrossRef
    [8]Dowling, J. P.; Scalora, M.; Bloemer, M. J.; Bowden, C. M. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys. 1994, 75, 1896–1899.CrossRef
    [9]Akahane, Y.; Asano, T.; Song, B. S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944–947.CrossRef
    [10]Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K. Lasing from twodimensional photonic crystals using anodic porous alumina. Adv. Mater. 2006, 18, 213–216.CrossRef
    [11]Wang, B.; Fei, G. T.; Wang, M.; Kong, M. G.; Zhang, L. D. Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007, 18, 365601.CrossRef
    [12]Guo, D. L.; Fan, L. X.; Wang, F. H.; Huang, S. Y.; Zou, X. W. Porous anodic aluminum oxide Bragg stacks as chemical sensors. J. Phys. Chem. C 2008, 112, 17952–17956.CrossRef
    [13]Wang, Z. H.; Zhang, J. H.; Xie, J.; Li, C.; Li, Y. F.; Liang, S.; Tian, Z. C.; Wang, T. Q.; Zhang, H.; Li, H. B.; et al. Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv. Funct. Mater. 2010, 20, 3784–3790.CrossRef
    [14]Choi, S. Y.; Mamak, M.; von Freymann, G.; Chopra, N.; Ozin, G. A. mesoporous Bragg stack color tunable sensors. Nano Lett. 2006, 6, 2456–2461.CrossRef
    [15]Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 2013, 1, 5285–5291.CrossRef
    [16]Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.CrossRef
    [17]Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Ouyang, H. M.; Zhang, L. D. Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 2014, 4, 3601.
    [18]Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, 2008.
    [19]Zhang, Y. Q.; Wang, J. X.; Ji, Z. Y.; Hu, W. P.; Jiang, L.; Song, Y. L.; Zhu, D. B. Solid-state fluorescence enhancement of organic dyes by photonic crystals. J. Mater. Chem. 2007, 17, 90–94.CrossRef
    [20]Casanova, F.; Chiang, C. E.; Li, C. P.; Roshchin, I. V.; Ruminski, A. M.; Sailor, M. J.; Schuller, I. K. Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology 2008, 19, 315709.CrossRef
    [21]Bruschi, L.; Mistura, G.; Liu, L. F.; Lee, W.; Gösele, U.; Coasne, B. Capillary condensation and evaporation in alumina nanopores with controlled modulations. Langmuir 2010, 26, 11894–11898.CrossRef
    [22]Wallacher, D.; Künzner, N.; Kovalev, D.; Knorr, N.; Knorr, K. Capillary condensation in linear mesopores of different shape. Phys. Rev. Lett. 2004, 92, 195704.CrossRef
    [23]Horikawa, T.; Do, D. D.; Nicholson, D. Capillary condensation of adsorbates in porous materials. Adv. Colloid Interfac. 2011, 169, 40–58.CrossRef
    [24]Barthelemy, P.; Ghulinyan, M.; Gaburro, Z.; Toninelli, C.; Pavesi, L.; Wiersma, D. S. Optical switching by capillary condensation. Nat. Photonics 2007, 1, 172–175.CrossRef
    [25]Siderius, D. W.; Shen, V. K. Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J. Phys. Chem. C 2013, 117, 5861–5872.CrossRef
    [26]Kierlik, E.; Monson, P. A.; Rosinberg, M. L.; Sarkisov, L.; Tarjus, G. Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior. Phys. Rev. Lett. 2001, 87, 055701.CrossRef
    [27]Broseta, D.; Barré, L.; Vizika, O.; Shahidzadeh, N.; Guilbaud, J.-P.; Lyonnard, S. Capillary condensation in a fractal porous medium. Phys. Rev. Lett. 2001, 86, 5313–5316.CrossRef
    [28]Jin, C. J.; Cheng, B. Y.; Man, B. Y.; Zhang, D. Z.; Ban, S. Z.; Sun, B.; Li, L. M.; Zhang, X. D.; Zhang, Z. Q. Twodimensional metallodielectric photonic crystal with a large band gap. Appl. Phys. Lett. 1999, 75, 1201–1203.CrossRef
    [29]Hossain, M. M.; Chen, G. Y.; Jia, B. H.; Wang, X. H.; Gu, M. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals. Opt. Express 2010, 18, 9048–9054.CrossRef
    [30]Zhang, Z. M.; Du, G. Q.; Jiang, H. T.; Li, Y. H.; Wang, Z. S.; Chen, H. Complete absorption in a heterostructure composed of a metal and a doped photonic crystal. J. Opt. Soc. Am. B 2010, 27, 909–913.CrossRef
    [31]Sigalas, M. M.; Chan, C. T.; Ho, K. M.; Soukoulis C. M. Metallic photonic band-gap materials. Phys. Rev. B 1995, 52, 11744–11750.CrossRef
    [32]Shang, G. L.; Fei, G. T.; Xu, S. H.; Yan, P.; Zhang L. D. Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode. Mater. Lett. 2013, 110, 156–159.CrossRef
    [33]Bendickson, J. M.; Dowling, J. P.; Scalora, M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional photonic band-gap structures. Phys. Rev. E 1996, 53, 4107–4121.CrossRef
    [34]Choy, T. C. Effective Medium Theory: Principles and Applications; Oxford University Press: Oxford, 1999.
    [35]Casanova, F.; Chiang, C. E.; Li, C. P.; Schuller, I. K. Direct observation of cooperative effects in capillary condensation: The hysteretic origin. Appl. Phys. Lett. 2007, 91, 243103.CrossRef
  • 作者单位:Guoliang Shang (1)
    Guangtao Fei (1)
    Yue Li (1)
    Lide Zhang (1)

    1. Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P. O. Box 1129, Hefei, 230031, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethanol showed that all the PBGs positions red-shifted; however, the transmittance of the PBG bottom showed different trends when the PBGs were located in different wavelength regions. In the near infrared region, liquid ethanol has strong light absorption, and, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs first increased and then decreased. However, in the visible light region, liquid ethanol has little light absorption, and thus, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs increased gradually all the time. Simulated results were consistent with the experimental results. The capillary condensation of organic vapors in the pores of porous alumina accounted for the change in the PBG bottom transmittance. The nonnegligible light absorption of the organic vapors was the cause of the decrease in the transmittance. The results for porous alumina PC adsorbing methanol, acetone, and toluene further confirmed the influences of light absorption on the PBG bottomed transmittance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700