The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer
详细信息    查看全文
  • 作者:Zhihua Li (1)
    Xiaohui Zhao (1)
    Yu Zhou (2)
    Yimin Liu (3)
    Quanbo Zhou (2)
    Huilin Ye (2)
    YinXue Wang (2)
    Jinlong Zeng (4)
    Yadong Song (1)
    Wenchao Gao (2)
    ShangYou Zheng (2)
    Baoxiong Zhuang (2)
    Huimou Chen (1)
    Wenzhu Li (1)
    Haigang Li (5)
    Haifeng Li (5)
    Zhiqiang Fu (2)
    Rufu Chen (2) (6)

    1. Department of Medical Oncology
    ; Sun Yat-sen Memorial Hospital ; Sun Yat-sen University ; Guangzhou ; China
    2. Department of Pancreaticobiliary Surgery
    ; Hepatobiliary Surgery ; Sun Yat-sen Memorial Hospital ; Sun Yat-sen University ; Guangzhou ; China
    3. Department of Radiotherapy
    ; Sun Yat-sen Memorial Hospital ; Sun Yat-sen University ; Guangzhou ; China
    4. Department of Medical Oncology
    ; Zengcheng People鈥檚 Hospital ; Sun Yat-sen University ; Guangzhou ; China
    5. Department of Pathology
    ; Sun Yat-sen Memorial Hospital ; Sun Yat-sen University ; Guangzhou ; China
    6. Department of General Surgery
    ; The Second Affiliated Hospital of Sun Yat-sen University ; Sun Yat-sen University ; 107 Yan-Jiang Xi Road ; Guangzhou ; 510120 ; China
  • 关键词:Pancreatic cancer ; HOTTIP ; Oncogenic ; Epithelial ; mesenchymal transition ; Chemoresistance
  • 刊名:Journal of Translational Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:8,808 KB
  • 参考文献:1. Stathis, A, Moore, MJ (2010) Advanced pancreatic carcinoma: Current treatment and future challenges. Nat. Rev. Clin. Oncol. 7: pp. 163-72 CrossRef
    2. Seufferlein, T, Bachet, JB, Cutsem, E, Rougier, P (2012) Pancreatic adenocarcinoma: ESMO-ESDO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23 Suppl 7: pp. vii33-40
    3. Burris, HR, Moore, MJ, Andersen, J, Green, MR, Rothenberg, ML, Modiano, MR (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15: pp. 2403-13
    4. Li, D, Xie, K, Wolff, R, Abbruzzese, JL (2004) Pancreatic cancer. Lancet 363: pp. 1049-57 CrossRef
    5. Vernejoul, F, Faure, P, Benali, N, Calise, D, Tiraby, G, Pradayrol, L (2002) Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res. 62: pp. 6124-31
    6. Torrisani, J, Buscail, L (2002) [Molecular pathways of pancreatic carcinogenesis]. Ann. Pathol. 22: pp. 349-55
    7. Korc, M (2003) Pathways for aberrant angiogenesis in pancreatic cancer. Mol. Cancer 2: pp. 8 CrossRef
    8. Prassas, I, Chrystoja, CC, Makawita, S, Diamandis, EP (2012) Bioinformatic identification of proteins with tissue-specific expression for biomarker discovery. BMC Med. 10: pp. 39 CrossRef
    9. Mattick, JS, Makunin, IV (2006) Non-coding RNA. Hum. Mol. Genet. 15 Spec No 1: pp. R17-29 CrossRef
    10. Prasanth, KV, Spector, DL (2007) Eukaryotic regulatory RNAs: an answer to the 鈥榞enome complexity鈥?conundrum. Genes Dev. 21: pp. 11-42 CrossRef
    11. Perez, DS, Hoage, TR, Pritchett, JR, Ducharme-Smith, AL, Halling, ML, Ganapathiraju, SC (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum. Mol. Genet. 17: pp. 642-55 CrossRef
    12. Guttman, M, Donaghey, J, Carey, BW, Garber, M, Grenier, JK, Munson, G (2011) LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477: pp. 295-300 CrossRef
    13. Carthew, RW, Sontheimer, EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: pp. 642-55 CrossRef
    14. Borchert, GM, Lanier, W, Davidson, BL (2006) RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13: pp. 1097-101 CrossRef
    15. Pillai, RS, Bhattacharyya, SN, Filipowicz, W (2007) Repression of protein synthesis by miRNAs: how many mechanisms?. Trends Cell Biol. 17: pp. 118-26 CrossRef
    16. Berezikov, E, Plasterk, RH (2005) Camels and zebrafish, viruses and cancer: a microRNA update. Hum. Mol. Genet. 14 Spec No. 2: pp. R183-90 CrossRef
    17. Gibb, EA, Brown, CJ, Lam, WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 10: pp. 38 CrossRef
    18. Ponting, CP, Oliver, PL, Reik, W (2009) Evolution and functions of long noncoding RNAs. Cell 136: pp. 629-41 CrossRef
    19. Tano, K, Mizuno, R, Okada, T, Rakwal, R, Shibato, J, Masuo, Y (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. Febs Lett 584: pp. 4575-80 CrossRef
    20. Wang, KC, Chang, HY (2011) Molecular mechanisms of long noncoding RNAs. Mol. Cell 43: pp. 904-14 CrossRef
    21. Prensner, JR, Chinnaiyan, AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1: pp. 391-407 CrossRef
    22. Prensner, JR, Iyer, MK, Balbin, OA, Dhanasekaran, SM, Cao, Q, Brenner, JC (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29: pp. 742-9 CrossRef
    23. Gupta, RA, Shah, N, Wang, KC, Kim, J, Horlings, HM, Wong, DJ (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464: pp. 1071-6 CrossRef
    24. Wang, KC, Yang, YW, Liu, B, Sanyal, A, Corces-Zimmerman, R, Chen, Y (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472: pp. 120-4 CrossRef
    25. Quagliata, L, Matter, MS, Piscuoglio, S, Arabi, L, Ruiz, C, Procino, A (2014) Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59: pp. 911-23 CrossRef
    26. Jiang, YJ, Bikle, DD (2014) LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J. Steroid Biochem. Mol. Biol. 144PA: pp. 87-90
    27. Ohara, Y, Oda, T, Sugano, M, Hashimoto, S, Enomoto, T, Yamada, K (2013) Histological and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) expression in clinical pancreatic cancer. Cancer Sci. 104: pp. 1127-34 CrossRef
    28. Rinn, JL, Kertesz, M, Wang, JK, Squazzo, SL, Xu, X, Bruqmann, SA (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129: pp. 1311-23 CrossRef
    29. Khalil, AM, Guttman, M, Huarte, M, Garber, M, Raj, A, Rivea Morales, D (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. U. S. A. 106: pp. 11667-72 CrossRef
    30. Mattick, JS (2011) Long noncoding RNAs in cell and developmental biology. Semin. Cell Dev. Biol. 22: pp. 327 CrossRef
    31. Batista, PJ, Chang, HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152: pp. 1298-307 CrossRef
    32. Gibb, EA, Vucic, EA, Enfield, KS, Stewart, GL, Loneragan, KM, Kennett, JY (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6: pp. e25915 CrossRef
    33. Gutschner, T, Diederichs, S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9: pp. 703-19 CrossRef
    34. Li, X, Wu, Z, Fu, X, Han, W (2013) Long noncoding RNAs: insights from biological features and functions to diseases. Med. Res. Rev. 33: pp. 517-53 CrossRef
    35. Chang, HY, Chi, JT, Dudoit, S, Bondre, C, Rijn, M, Botstein, D (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 99: pp. 12877-82 CrossRef
    36. Chang, HY, Sneddon, JB, Alizadeh, AA, Sood, R, West, RB, Montgomery, K (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biol. 2: pp. E7 CrossRef
    37. Rinn, JL, Bondre, C, Gladstone, HB, Brown, PO, Chang, HY (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2: pp. e119 CrossRef
    38. McGinnis, W, Krumlauf, R (1992) Homeobox genes and axial patterning. Cell 68: pp. 283-302 CrossRef
    39. Scott, MP (1992) Vertebrate homeobox gene nomenclature. Cell 71: pp. 551-3 CrossRef
    40. Krumlauf, R (1994) Hox genes in vertebrate development. Cell 78: pp. 191-201 CrossRef
    41. Shaut, CA, Keene, DR, Sorensen, LK, Li, DY, Stadler, HS (2008) HOXA13 is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet. 4: pp. e1000073 CrossRef
    42. Gu, ZD, Shen, LY, Wang, H, Chen, XM, Li, Y, Ning, T (2009) HOXA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res. 69: pp. 4969-73 CrossRef
    43. Mohamadkhani, A (2014) Long noncoding RNAs in interaction with RNA binding proteins in hepatocellular carcinoma. Hepat Mon 14: pp. e18794 CrossRef
    44. Guo, B, Che, T, Shi, B (2011) Screening and identification of specific markers for bladder transitional cell carcinoma from urine urothelial cells with suppressive subtractive hybridization and cDNA microarray. Can Urol Assoc J 5: pp. E129-37 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background The human genome encodes many long non-coding RNAs (lncRNAs). However, their biological functions, molecular mechanisms, and the prognostic value associated with pancreatic ductal adenocarcinoma (PDAC) remain to be elucidated. Here, we identify a fundamental role for the lncRNA HOXA transcript at the distal tip (HOTTIP) in the progression and chemoresistance of PDAC. Methods High-throughput microarrays were performed to detect the expression profiles of lncRNAs and messenger RNAs in eight human PDAC tissues and four pancreatic tissues. Quantitative real-time PCR was used to determine the levels of HOTTIP and HOXA13 transcripts in PDAC cell lines and 90 PDAC samples from patients. HPDE6 cells (immortalized human pancreatic ductal epithelial cells) and corresponding adjacent non-neoplastic tissues were used as controls, respectively. The functions of HOTTIP and HOXA13 in cell proliferation, invasion, and epithelial-mesenchymal transition were evaluated by targeted knockdown in vitro. CCK-8 assays, colony formation assays, and xenografts in nude mice were used to investigate whether targeted silencing of HOTTIP could sensitize pancreatic cancer cells to gemcitabine. Immunohistochemistry was performed to investigate the relationship between HOXA13 expression and patient outcome. Results Microarray analyses revealed that HOTTIP was one of the most significantly upregulated lncRNAs in PDAC tissues compared with pancreatic tissues. Quantitative PCR further verified that HOTTIP levels were increased in PDAC cell lines and patient samples compared with controls. Functionally, HOTTIP silencing resulted in proliferation arrest by altering cell-cycle progression, and impaired cell invasion by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Additionally, inhibition of HOTTIP potentiated the antitumor effects of gemcitabine in vitro and in vivo. Furthermore, knockdown of HOXA13 by RNA interference (siHOXA13) revealed that HOTTIP promoted PDAC cell proliferation, invasion, and chemoresistance, at least partly through regulating HOXA13. Immunohistochemistry results revealed that higher HOXA13 expression was correlated with lymph node metastasis, poor histological differentiation, and decreased overall survival in PDAC patients. Conclusions As a crucial tumor promoter, HOTTIP promotes cell proliferation, invasion, and chemoresistance by modulating HOXA13. Therefore, the HOTTIP/HOXA13 axis is a potential therapeutic target and molecular biomarker for PDAC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700