Duodenal–Jejunal Bypass Improves Glucose Homeostasis in Association with Decreased Proinflammatory Response and Activation of JNK in the Liver and Adipose Tissue in a T2DM Rat Model
详细信息    查看全文
  • 作者:Chunxiao Hu (1)
    Qingbo Su (1)
    Feng Li (1)
    Guangyong Zhang (1)
    Dong Sun (1)
    Haifeng Han (1)
    Shaozhuang Liu (1)
    Sanyuan Hu (1)
  • 关键词:Duodenal–jejunal bypass ; Type 2 diabetes mellitus ; Inflammatory ; c ; Jun NH2 ; terminal kinase ; Insulin signaling
  • 刊名:Obesity Surgery
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:24
  • 期:9
  • 页码:1453-1462
  • 全文大小:822 KB
  • 参考文献:1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-1. CrossRef
    2. Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes Metab. 2003;29(4 Pt 2):6S9-S18.
    3. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724-7. CrossRef
    4. Christou NV, Sampalis JS, Liberman M, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416-3. discussion 23-. CrossRef
    5. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248-6 e5. CrossRef
    6. Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (London). 2009;33(1):S33-0. CrossRef
    7. Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1-1. CrossRef
    8. Geloneze B, Geloneze SR, Chaim E, et al. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg. 2012;256(1):72-. CrossRef
    9. Jiang F, Zhu H, Zheng X, Tu J, Zhang W, Xie X. Duodenal–jejunal bypass for the treatment of type 2 diabetes in Chinese patients with an average body mass index <24 kg/m. Surg Obes Relat Dis. 2013;S1550-7289(13):00294-.
    10. Paik KY, Kim W, Song KH, Kwon HS, Kim MK, Kim E. The preliminary clinical experience with laparoscopic duodenojejunal bypass for treatment of type 2 diabetes mellitus in non-morbidly obese patients: the 1-year result in a single institute. Surg Endosc. 2012;26(11):3287-2. CrossRef
    11. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741-. CrossRef
    12. Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-Kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery. 2007;142(1):74-5. CrossRef
    13. Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968-5. CrossRef
    14. Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049-8. CrossRef
    15. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307(5708):373-. CrossRef
    16. Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia. 2005;48(6):1038-0. CrossRef
    17. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43(11):1271-. CrossRef
    18. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327-4. CrossRef
    19. Morimoto H, Sakata K, Oishi M, et al. Effect of high-sensitivity C-reactive protein on the development of diabetes as demonstrated by pooled logistic-regression analysis of annual health-screening information from male Japanese workers. Diabetes Metab. 2013;39(1):27-3. CrossRef
    20. Rull A, Camps J, Alonso-Villaverde C, Joven J. Insulin resistance, inflammation, and obesity: role of monocyte chemoattractant protein-1 (or CCL2) in the regulation of metabolism. Mediators Inflamm. 2010 Sep;2010. Epub 2010 Sep 12. PMID: 20936118
    21. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002 Nov;420(6913):333-. PMID: 12447443.
    22. Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24(8):2596-11. CrossRef
    23. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531-. CrossRef
    24. Schernthaner GH, Kopp HP, Krzyzanowska K, Kriwanek S, Koppensteiner R, Schernthaner G. Soluble CD40L in patients with morbid obesity: significant reduction after bariatric surgery. Eur J Clin Invest. 2006;36(6):395-01. CrossRef
    25. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950-. CrossRef
    26. Kopp HP, Kopp CW, Festa A, et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 2003;23(6):1042-. CrossRef
    27. Kopp HP, Krzyzanowska K, Mohlig M, Spranger J, Pfeiffer AF, Schernthaner G. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes (London). 2005;29(7):766-1. CrossRef
    28. Vazquez LA, Pazos F, Berrazueta JR, et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab. 2005;90(1):316-2. CrossRef
    29. Zhang H, Wang Y, Zhang J, Potter BJ, Sowers JR, Zhang C. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol. 2011;31(9):2063-. CrossRef
    30. Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2011;7(5):618-4. CrossRef
    31. Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA. The combined effect of metformin and l -cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol. 2013;714(1-):448-5. CrossRef
    32. Morsiani E, Carpanelli MC. Observations on the metabolic effects of partial jejunoileal bypass in streptozotocin-treated rats. Eur Surg Res. 1985;17(1):25-2. CrossRef
    33. Strader AD, Clausen TR, Goodin SZ, Wendt D. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes Surg. 2009;19(1):96-04. CrossRef
    34. Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal–jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950-. CrossRef
    35. Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal–jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes. Ann Surg. 2013;258(1):89-7. CrossRef
    36. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313-0. CrossRef
    37. Li B, Lu Y, Srikant CB, Gao ZH, Liu JL. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal–jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol. 2013;304(7):G635-5. CrossRef
    38. Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437-6. CrossRef
    39. Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ. Duodenal–jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923-2. CrossRef
    40. Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal–jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912-.
    41. Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet. 1999;353(9165):1649-2. CrossRef
    42. Satoh-Asahara N, Sasaki Y, Wada H, et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism. 2013;62(3):347-1. CrossRef
    43. Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013 Aug;4:93. Epub 2013 Aug 22. PMID: 23964268
    44. Gastaldelli A, Miyazaki Y, Pettiti M, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab. 2002;87(11):5098-03. CrossRef
    45. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183-0. CrossRef
    46. Moschen AR, Molnar C, Wolf AM, et al. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J Hepatol. 2009;51(4):765-7. CrossRef
    47. Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214-3. CrossRef
    48. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047-4. CrossRef
    49. Zhang L, Yang M, Ren H, et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int. 2013;33(5):794-04. CrossRef
    50. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665-. CrossRef
    51. Bonhomme S, Guijarro A, Keslacy S, et al. Gastric bypass up-regulates insulin signaling pathway. Nutrition. 2011;27(1):73-0. CrossRef
    52. Sun D, Wang K, Yan Z, et al. Duodenal–jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats. Obes Surg. 2013;23(11):1734-2. CrossRef
  • 作者单位:Chunxiao Hu (1)
    Qingbo Su (1)
    Feng Li (1)
    Guangyong Zhang (1)
    Dong Sun (1)
    Haifeng Han (1)
    Shaozhuang Liu (1)
    Sanyuan Hu (1)

    1. Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, China
  • ISSN:1708-0428
文摘
Background There is accumulating evidence that obesity leads to a proinflammatory state, which plays crucial roles in insulin resistance and development of type 2 diabetes mellitus (T2DM). Previous studies demonstrated that weight loss after bariatric surgery was accompanied by a suppression of the proinflammatory state. However, the effect of bariatric surgery on the proinflammatory state and associated signaling beyond weight loss is still elusive. The objective of this study was to investigate the effect of duodenal–jejunal bypass (DJB) on glucose homeostasis, the proinflammatory state and the involving signaling independently of weight loss. Methods A high-fat diet and low-dose streptozotocin administration were used to induce T2DM in male Sprague–Dawley rats. The diabetic rats underwent DJB or sham surgery. The blood glucose, glucose tolerance and insulin resistance were determined to evaluate the glucose homeostasis. Serum insulin, GLP-1 and hsCRP were detected by ELISA. The gene expression of TNF-α, IL-6, IL-1β and MCP-1 in liver and fat was determined by quantitative real-time RT-PCR. The JNK activity and serine phosphorylation of IRS-1 in liver and adipose tissue were determined by Western blotting. Results Compared to the S-DJB group, DJB induced significant and sustained glycemic control with improved insulin sensitivity and glucose tolerance independently of weight loss. DJB improved the proinflammatory state indicated by decreased circulating hsCRP and proinflammatory gene expression in the liver and adipose tissue. The JNK activity and serine phosphorylation of IRS-1 in liver and adipose tissue were significantly reduced after DJB. Conclusions DJB achieved a rapid and sustainable glycemic control independently of weight loss. The data indicated that the improved proinflammatory state and decreased JNK activity after DJB may contribute to the improved glucose homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700