Exclusion of the Distal Ileum Cannot Reverse the Anti-Diabetic Effects of Duodenal-Jejunal Bypass Surgery
详细信息    查看全文
  • 作者:Jie Chai ; Guangyong Zhang ; Shaozhuang Liu ; Chunxiao Hu ; Haifeng Han…
  • 关键词:Duodenal ; jejunal bypass ; Type 2 diabetes mellitus ; GLP ; 1 ; Insulin resistance
  • 刊名:Obesity Surgery
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:26
  • 期:2
  • 页码:261-268
  • 全文大小:1,623 KB
  • 参考文献:1.Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.PubMed CrossRef
    2.Reinehr T, Roth CL. The gut sensor as regulator of body weight. Endocrine. 2014.
    3.Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.PubMed CrossRef
    4.Kwok CS, Pradhan A, Khan MA, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;173(1):20–8.PubMed CrossRef
    5.Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e245.PubMed CrossRef
    6.Ogawa N, Yamaguchi H, Shimbara T, et al. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Neurosci Lett. 2008;433(1):38–42.PubMed CrossRef
    7.Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11.PubMed PubMedCentral CrossRef
    8.Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75.PubMed CrossRef
    9.Geloneze B, Geloneze SR, Chaim E, et al. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg. 2012;256(1):72–8.PubMed CrossRef
    10.Li B, Lu Y, Srikant CB, et al. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol. 2013;304(7):G635–45.PubMed CrossRef
    11.Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15.PubMed CrossRef
    12.Vella A. Enteroendocrine secretion after Roux-en-Y gastric bypass: is it important? Neurogastroenterol Motil. 2013;25(1):1–3.PubMed PubMedCentral CrossRef
    13.Mason EE. Ileal [correction of ilial] transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg. 1999;9(3):223–8.PubMed CrossRef
    14.Vidal J, Jiménez A. Diabetes remission following metabolic surgery: is GLP-1 the culprit? Curr Atheroscler Rep. 2013;15(10):357.PubMed CrossRef
    15.Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58.PubMed CrossRef
    16.Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240(2):236–42.PubMed PubMedCentral CrossRef
    17.Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.PubMed PubMedCentral CrossRef
    18.Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lapband in mice. Cell Metab. 2008;8(3):201–11.PubMed CrossRef
    19.Ahrén B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–8.PubMed CrossRef
    20.Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86(8):3717–23.PubMed CrossRef
    21.Zhang M, Lv XY, Li J, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045.PubMed PubMedCentral CrossRef
    22.Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMed CrossRef
    23.Mingrone G. Role of the incretin system in the remission of type 2 diabetes following bariatric surgery. Nutr Metab Cardiovasc Dis. 2008;18(8):574–9.PubMed CrossRef
    24.Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. Jama. 2007;298(2):194–206.PubMed CrossRef
    25.Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients. Obes Surg. 2010;20(11):1530–5.PubMed CrossRef
    26.Speck M, Cho YM, Asadi A, et al. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32.PubMed CrossRef
    27.Vilsbøll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50(3):609–13.PubMed CrossRef
    28.Strader AD, Clausen TR, Goodin SZ, et al. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes Surg. 2009;19(1):96–104.PubMed CrossRef
    29.Chelikani PK, Shah IH, Taqi E, et al. Comparison of the effects of Roux-en-Y gastric bypass and ileal transposition surgeries on food intake, body weight, and circulating peptide YY concentrations in rats. Obes Surg. 2010;20(9):1281–8.PubMed CrossRef
    30.Knop FK, Vilsboll T, Hojberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56(8):1951–9.PubMed CrossRef
    31.Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419–25.PubMed PubMedCentral CrossRef
    32.Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring, Md). 2009;17(9):1671–7.CrossRef
    33.Walters JR, Pattni SS. Managing bile acid diarrhea. Therap Adv Gastroenterol. 2010;3(6):349–57.PubMed PubMedCentral CrossRef
    34.Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.PubMed PubMedCentral CrossRef
    35.Kohli R, Setchell KD, Kirby M, et al. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology. 2013;154(7):2341–51.PubMed PubMedCentral CrossRef
    36.Nakatani H, Kasama K, Oshiro T, et al. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism. 2009;58(10):1400–7.PubMed CrossRef
    37.Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol. 2014;28(4):727–40.PubMed PubMedCentral CrossRef
    38.Eissele R, Göke R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Investig. 1992;22(4):283–91.CrossRef
    39.Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.PubMed CrossRef
    40.Mortensen K, Christensen LL, Holst JJ, et al. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept. 2003;114:189–96.PubMed CrossRef
  • 作者单位:Jie Chai (1)
    Guangyong Zhang (1)
    Shaozhuang Liu (1)
    Chunxiao Hu (1)
    Haifeng Han (1)
    Sanyuan Hu (1)
    Zongli Zhang (1)

    1. Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua West Road, Jinan, 250012, Shandong, People’s Republic of China
  • 刊物主题:Surgery;
  • 出版者:Springer US
  • ISSN:1708-0428
文摘
Background Duodenal-jejunal bypass (DJB) has been proven effective in glycemic control in various type 2 diabetes (T2DM) rat models. “Hindgut hypothesis” and “foregut hypothesis” are two prevailing theories to elucidate the weight-independent anti-diabetic mechanisms of DJB, however, which mechanism plays the dominant role that has not been illuminated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700