Locating cryptotephra in lake sediments using fluid imaging technology
详细信息    查看全文
  • 作者:Robert M. D’Anjou ; Nicholas L. Balascio ; Raymond S. Bradley
  • 关键词:Tephra ; Cryptotephra ; Lake sediment ; Fluid imaging ; Particle recognition ; FlowCAM
  • 刊名:Journal of Paleolimnology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:52
  • 期:3
  • 页码:257-264
  • 全文大小:705 KB
  • 参考文献:1. Abbott PM, Davies SM, Austin WEN, Pearce NJG, Hibbert FD (2011) Identification of cryptotephra horizons in a North East Atlantic marine record spanning marine isotope stages 4 and 5a (60,000-2,000 a b2k). Quat Int 246:177-89 CrossRef
    2. álvarez E, Lopez-Urrutia á, Nogueira E, Fraga S (2011) How to effectively sample the plankton size spectrum? A case study using the FlowCAM. J Plankton Res 33:1119-133 CrossRef
    3. Andrews JT, Eberl DD, Kristjansdottir GB (2006) An exploratory method to detect tephras from quantitative XRD scans: examples from Iceland and east Greenland marine sediments. Holocene 16:1035-042 CrossRef
    4. Balascio NL (2011) Lacustrine records of Holocene climate and environmental change from the Lofoten Islands, Norway. Ph.D. Dissertation. University of Massachusetts Amherst
    5. Balascio NL, Wickler S, Narmo LE, Bradley RS (2011a) Distal cryptotephra found in a Viking boathouse: the potential for tephrochronology in reconstructing the Iron Age in Norway. J Archaeological Sci 38:934-41 CrossRef
    6. Balascio NL, Zhang Z, Bradley RS, Perren B, Dahl SO, Bakke J (2011b) A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway. Quat Res 75:288-00 CrossRef
    7. Barofsky A, Simonelli P, Vidoudez C (2010) Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J Plankton Res 32:263-72 CrossRef
    8. Brown L (2004) Continuous imaging fluid particle analysis—a primer. Fluid imaging technologies white paper. http://fluidimaging.com
    9. Brown L (2008) Particle image understanding—a primer. Fluid Imaging Technologies, Yarmouth, ME
    10. Brown L (2010a) VisualSpreadsheet?: intelligent pattern recognition for particle analysis. Fluid Imaging Technologies VisualSpreadsheet? Particle Analysis Software Product Literature. http://fluidimaging.com
    11. Brown L (2010b) VisualSpreadsheet?: interactive, intuitive particle analysis software. Fluid Imaging Technologies VisualSpreadsheet? Particle Analysis Software Product Literature. http://fluidimaging.com
    12. Brown L (2011a) Characterizing biologics using dynamic imaging particle analysis. BioPharm Int 24:4-
    13. Brown L (2011b) FlowCAM tech brief: proper thresholding of transparent particles. Fluid imaging technologies tech briefs. http://fluidimaging.com
    14. Buskey EJ, Hyatt CJ (2006) Use of the FlowCAM for semiautomated recognition and enumeration of red tide cells ( / Karenia brevis) in natural plankton samples. Harmful Algae 5:685-92 CrossRef
    15. Calanchi N, Cattaneo A, Dinelli E, Gasparotto G, Lucchini F (1998) Tephra layers in late quaternary sediments of the central Adriatic Sea. Mar Geol 149:191-09 CrossRef
    16. Carter L, Manighetti B (2006) Glacial/interglacial control of terrigenous and biogenic fluxes in the deep ocean off a high input, collisional margin: a 139 kyr-record from New Zealand. Mar Geol 226:307-22 CrossRef
    17. Carter L, Manighetti B, Elliot M, Trustrum N, Gomez B (2002) Source, sea level and circulation effects on the sediment flux to the deep ocean over the past 15 ka off eastern New Zealand. Glob Planet Change 33:339-55 CrossRef
    18. D’Andrea WJ, Vaillencourt DA, Balascio NL, Werner A, Roof SR, Retelle M, Bradley RS (2012) Mild little ice age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40:1007-010 CrossRef
    19. De Vleeschouwer F, van Vli?t-Lanoé B, Fagel N, Richter T, Bo?s X (2008) Development and application of high-resolution petrography on resin-impregnated Holocene peat columns to detect and analyse tephras, cryptotephras, and other materials. Quat Int 178:54-7 CrossRef
    20. Dugmore AJ, Newton AJ (1992) Thin tephra layers in peat revealed by X-radiography. J Archaeol Sci 19:163-70 CrossRef
    21. Dugmore AJ, Larsen G, Newton AJ (1995) Seven tephra isochrones in Scotland. The Holocene 5:257-66
    22. Enache MD, Cumming BF (2006) The morphological and optical properties of volcanic glass: a tool to assess density-induced vertical migration of tephra in sediment cores. J Paleolimnol 35:661-67 CrossRef
    23. Ersoy O, Gourgaud A, Aydar E, Chinga G, Thouret J-C (2007) Quantitative scanning-electron microscope analysis of volcanic ash surfaces: application to the 1982-983 Galunggung eruption (Indonesia). Geol Soc Am Bull 119:743-52 CrossRef
    24. Gehrels MJ, Newnham RM, Lowe DJ, Wynne S, Hazell ZJ, Caseldine C (2008) Towards rapid assay of cryptotephra in peat cores: review and evaluation of various methods. Quat Int 178:68-4 CrossRef
    25. Gr?nvold K, óskarsson N, Johnsen SJ, Clausen HB, Hammer CU, Bond G, Bard E (1995) Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth Planet Sci Lett 135:149-55 CrossRef
    26. Haflidason H, Eiriksson J, Van Kreveld S (2000) The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. J Quat Sci 15:3-2
    27. Hall VA, Pilcher JR (2002) Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection, characterization and usefulness. Holocene 12:223-30
    28. Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83:1961-988 CrossRef
    29. Heiken G (1974) An atlas of volcanic ash. Smithson Contrib Earth Sci 12:1-01 CrossRef
    30. Heiken G, Wohletz KH (1985) Volcanic ash. University of California Press, Berkeley, CA
    31. Ide K, Takahashi K, Kuwata A, Nakamachi M, Saito H (2008) A rapid analysis of copepod feeding using FlowCAM. J Plankton Res 30:275-81 CrossRef
    32. Jennings AE, Gronvold K, Hilberman R, Smith M, Hald M (2002) High resolution study of Icelandic tephras in the Kangerlussuaq trough, southeast Greenland, during the last deglaciation. J Quat Sci 17:747-57 CrossRef
    33. Jude-Eton T, Thordarson T, Gudmundsson MT, Oddsson B (2012) Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsv?tn Volcano, Iceland. Bull Volc 74:1057-082 CrossRef
    34. Kido Y, Koshikawa T, Tada R (2006) Rapid and quantitative major element analayis method for wet fine-grained sediments using and XRF microscanner. Mar Geol 229:209-25 CrossRef
    35. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochron 6:107-53 CrossRef
    36. Lowe DJ, Hunt JB (2001) A summary of terminology used in tephra-related studies. Les Dossiers de l’Archeo-Logis 1:17-2
    37. Meara R (2011) Climatic and environmental impact of Holocene silicic explosive eruptions in Iceland. Ph.D. Thesis. University of Edinburgh, p 324
    38. Pilcher JR, Hall VA, McCormac FG (1996) An outline tephrochronology for the Holocene of the north of Ireland. J Quat Sci 11:485-94 CrossRef
    39. Pilcher J, Bradley RS, Francus P, Anderson L (2005) A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas 34:136-56
    40. Sieracki C, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285-96 CrossRef
    41. Sterling MC Jr, Bonner JS, Ernest ANS, Page CA, Autenrieth RL (2004) Characterizing aquatic sediment–oil aggregates using in situ instruments. Mar Poll Bull 48:533-42 CrossRef
    42. Tauxe L, Steindorf JL, Harris A (2006) Depositional remanent magnetization: toward an improved theoretical and experimental foundation. Earth Planet Sci Lett 244:515-29 CrossRef
    43. Turney CSM (1998) Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. J Paleolimnol 19:199-06 CrossRef
    44. Turney CSM, Harkness DD, Lowe JJ (1997) The use of microtephra horizons to correlate Late-glacial lake sediment successions in Scotland. J Quat Sci 12:525-31
  • 作者单位:Robert M. D’Anjou (1)
    Nicholas L. Balascio (1) (2)
    Raymond S. Bradley (1)

    1. Department of Geosciences, Climate Systems Research Center, University of Massachusetts Amherst, Amherst, MA, 01003, USA
    2. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA
  • ISSN:1573-0417
文摘
We report a new approach to locate and quantify cryptotephra in sedimentary archives using a continuously-imaging Flow Cytometer and Microscope (FlowCAM?). The FlowCAM rapidly photographs particles flowing in suspension past a microscope lens and performs semi-automated analysis of particle images. It has had primarily biological applications, although the potential sedimentological applications are numerous. Here we test the ability of this instrument to image irregularly shaped, vesicular glass shards and to screen sediment samples for the presence of cryptotephra. First, reference samples of basalt and rhyolite tephra (sieved

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700