Sharp L p Bound for Holomorphic Functions on the Unit Disc
详细信息    查看全文
  • 作者:Adam Osȩkowski
  • 关键词:Primary 31B05 ; Secondary 30J99 ; Harmonic function ; holomorphic function ; best constants
  • 刊名:Mediterranean Journal of Mathematics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 页码:127-139
  • 全文大小:541 KB
  • 参考文献:1.Aarão J., O’Neill M.D.: Sharp estimates in some inequalities of Zygmund type for Riesz transforms. Proc. Am. Math. Soc. 140, 4227–4233 (2012)CrossRef MATH
    2.Banuelos R., Wang G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms. Duke Math. J. 80(3), 575–600 (1995)CrossRef MathSciNet MATH
    3.Burkholder D.L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12(3), 647–702 (1984)CrossRef MathSciNet MATH
    4.Choi C.: A weak-type inequality for differentially subordinate harmonic functions. Trans. Am. Math. Soc. 350, 2687–2696 (1998)CrossRef MATH
    5.Davis B.: On the weak type (1,1) inequality for conjugate functions. Proc. Am. Math. Soc. 44, 307–311 (1974)MATH
    6.Essén E.M.: A superharmonic proof of the M. Riesz conjugate function theorem. Ark. Mat. 22, 241–249 (1984)CrossRef MathSciNet MATH
    7.Gamelin T.W.: Uniform Algebras and Jensen Measures. Cambridge University Press, London (1978)MATH
    8.Gohberg, I., Krupnik, N.: Norm of the Hilbert transformation in the L p space, Funct. Anal. Pril. 2, pp. 91–92 (in Russian); English transl. in Funct. Anal. Appl. 2 (1968), pp. 180–181 (1968)
    9.Gokhberg, I., Krupnik, N.: Introduction to the theory of one-dimensional singular integral operators (in Russian) Izdat. “Štiinca”. Kishinev (1973)
    10.Janakiraman P.: Best weak-type (p, p) constants, \({1 \leq p \leq 2}\) for orthogonal harmonic functions and martingales. Ill. J. Math. 48, 909–921 (2004)MathSciNet MATH
    11.Kolmogorov A.N.: Sur les fonctions harmoniques conjugées et les séries de Fourier. Fund. Math. 7, 24–29 (1925)
    12.Melas A.D.: The Bellman functions of dyadic-like maximal operators and related inequalities. Adv. Math. 192(2), 310–340 (2005)CrossRef MathSciNet MATH
    13.Melas A.D., Nikolidakis E., Stavropoulos T.: Sharp local lower L p -bounds for Dyadic-like maximal operators. Proc. Am. Math. Soc. 141, 3171–3181 (2013)CrossRef MathSciNet MATH
    14.Nazarov F., Treil S.: The weighted-norm inequalities for Hilbert transform are now trivial. C. R. Acad. Sci. Paris Sér. I Math. 323, 717–722 (1996)MathSciNet MATH
    15.Osȩkowski A.: Sharp logarithmic inequalities for Riesz transforms. J. Funct. Anal. 263, 89–108 (2012)CrossRef MathSciNet
    16.Pichorides S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov.. Studia Math. 44, 165–179 (1972)MathSciNet MATH
    17.Riesz M.: Les fonctions conjugées et ler séries de Fourier. C. R. Acad. Paris. 178, 1464–1467 (1924)MATH
    18.Riesz M.: Sur les fonctions conjugées. Math. Z. 27, 218–244 (1927)CrossRef MathSciNet MATH
    19.Slavin L., Stokolos A., Vasyunin V.: Monge-Ampère equations and Bellman functions: the dyadic maximal operator. C. R. Math. Acad. Sci. Paris. 346(9-10), 585–588 (2008)CrossRef MathSciNet MATH
    20.Slavin L., Vasyunin V.: Sharp results in the integral-form John–Nirenberg inequality. Trans. Am. Math. Soc. 363, 4135–4169 (2011)CrossRef MathSciNet MATH
    21.Tomaszewski B.: Some sharp weak-type inequalities for holomorphic functions on the unit ball of \({\mathbb{C}^n}\) . Proc. Am. Math. Soc. 95, 271–274 (1985)MathSciNet MATH
    22.Vasyunin V.: The sharp constant in the reverse Holder inequality for Muckenhoupt weights. St. Petersburg Math. J. 15(1), 49–79 (2004)CrossRef MathSciNet MATH
    23.Zygmund, A.: Trigonometric series. vol. 2, Cambridge University Press, London (1968)
  • 作者单位:Adam Osȩkowski (1)

    1. Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Birkh盲user Basel
  • ISSN:1660-5454
文摘
For any 1 < p < ∞ and any \({X, Y\in \mathbb{R}}\) satisfying \({|X|\leq Y}\) , we determine the optimal constant C p (X,Y) such that the following holds. If F is a holomorphic function on the unit disc satisfying ReF(0) = X and \({||{\rm Re}F||_{L^{p}(\mathbb{T})}=Y}\) , then $$||F||_{L^p(\mathbb{T})}\geq C_p(X,Y).$$

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700