Effects of Zn-doping on structure and electrical properties of p-type conductive CuCr1↿em>x Zn x O2 delaf
详细信息    查看全文
  • 作者:Ya-Hui Chuai ; Xin Wang ; Hong-Zhi Shen ; Ya-Dan Li
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:7
  • 页码:3592-3599
  • 全文大小:2,438 KB
  • 参考文献:1.Ginley D, Roy B, Ode A, Warmsingh C, Yoshida Y, Parilla P, Teplin C, Kaydanova T, Miedaner A, Curtis C (2003) Non-vacuum and PLD growth of next generation TCO materials. Thin Solid Films 445:193–198CrossRef
    2.Harvey SP, Mason TO, Gassenbauer Y, Schafranek R, Klein A (2006) Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D: Appl Phys 39:3959CrossRef
    3.Popovich ND, Wong SS, Ufer S, Sakhrani V, Paine D (2003) Electron-transfer kinetics at ITO films: influence of oxygen plasma. J Electrochem Soc 150:H255–H259CrossRef
    4.Nomura K, Shibata N, Maeda M (2002) Preparation of zinc oxide thin films by pulsed current electrolysis. J Electrochem Soc 149:F76–F80CrossRef
    5.Park DH, Cho YH, Do YR, Ahn BT (2006) Characterization of Eu-doped SnO2 thin films deposited by radio-frequency sputtering for a transparent conductive phosphor layer sensors and displays: principles, materials, and processing. J Electrochem Soc 153:H63–H67CrossRef
    6.Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRef
    7.Dong G, Zhang M, Lan W (2008) Structural and physical properties of Mg-doped CuAlO2 thin films. Vacuum 82:1321–1324CrossRef
    8.Dong G, Zhang M, Zhaeo X, Hui Yana, Chunyu Tianb, Yonggang Renb (2010) Improving the electrical conductivity of CuCrO2 thin film by N doping. Appl Surf Sci 256:4121–4124CrossRef
    9.Nakanishi A, Katayama-Yoshida H (2012) Computational materials design for superconductivity in hole-doped delafossite CuAlO2: transparent superconductors. Solid State Commun 152:24–27CrossRef
    10.Dong G, Zhang M, Wang M, Tang F, Li H, Huang A, Yan H (2012) Synthesis, electrical and optical properties of CuNdO2 compound. J Phys Chem Solids 73:1170–1172CrossRef
    11.Chuai YH, Hu B, Li YD, Shen HZ, Zheng CT, Wang YD (2015) Effect of Sn substitution on the structure, morphology and photoelectricity properties of high c-axis oriented CuFe1-x Sn x O2 thin film. J Alloy Compd 627:299–306CrossRef
    12.Han MJ, Jiang K, Zhang JZ, Li YW, Hu ZG, Chu JH (2011) Temperature dependent phonon evolutions and optical properties of highly c-axis oriented CuGaO2 semiconductor films grown by the sol-gel method. Appl Phys Lett 99:131104CrossRef
    13.Jlaiel F, Elkhouni T, Amami M, Strobel P, Ben Salah A (2013) Structural and physical properties of the (Ca, Mg)-doped delafossite powder CuGaO2. Mater Res Bull 48:1020–1026CrossRef
    14.Han MJ, Duan ZH, Zhang JZ, Zhang S, Li YW, Hu ZG (2013) Electronic transition and electrical transport properties of delafossite CuCr1-x Mg x O2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: a composition dependence study. J Appl Phys 114:163526CrossRef
    15.Duan N, Sleight AW, Jayaraj MK, Tate J (2000) Transparent p-type conducting CuScO 2+x films. Appl Phys Lett 77:1325CrossRef
    16.Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRef
    17.Jiang HF, Zhu XB, Lei HC, Li G, Yang ZR, Song WH, Dai JM, Sun YP, Fu YK (2011) Effects of Mg substitution on the structural, optical, and electrical properties of CuAlO2 thin films. J Alloy Compd 509:1768–1773CrossRef
    18.Dong P, Zhang M, Dong GB, Zhao XP, Yan H (2008) The optical and electrical properties of Zn-doped CuAlO2 thin films deposited by RF magnetron sputtering semiconductor devices, materials, and processing. J Electrochem Soc 155:H319–H322CrossRef
    19.Kakehi Y, Satoh K, Yoshimura T, Ashida A, Fujimura N (2010) Effects of Mg doping on structural, optical, and electrical properties of CuScO2(0001) epitaxial films. Vaccum 84:618–621CrossRef
    20.Jayalakshmi V, Murugan R, Palanivel B (2005) Electronic and structural properties of CuMO2 (M = Al, Ga, In). J Alloys Compd 388:19–22CrossRef
    21.Pellicer-Porres J, Segura A, Martinez E (2005) Erratum: vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys Rev B 72:064301–064306CrossRef
    22.Jlaiel F, Amami M, Boudjada N, Strobel P, Ben Salah A (2011) Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J Alloys Compd 509:7784–7788CrossRef
    23.Chen HY, Chang KP, Yang CC (2013) Characterization of transparent conductive delafossite-CuCr1−lic ">x O2 films. Appl Surf Sci 273:324–329CrossRef
    24.Banerrjee AN, Kundoo S, Chattoopadhyay KK (2003) Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering. Thin Solid Films 440:5–10CrossRef
    25.Banerjee AN, Maity R, Chattopadhyay KK (2004) Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering. Mater Lett 58:10–13CrossRef
    26.Ko D, Urban JJ, Murray CB (2010) Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. J Nano Lett 10:1842–1847CrossRef
    27.Lalanne M, Barnabe A, Mathieu F, Tailhades Ph (2009) Synthesis and thermostructural studies of a CuFe1−lic ">x Cr x O2 delafossite Solid Solution with 0 ≤ x ≤ 1. Inorg Chem 48:6065–6071CrossRef
    28.Nozaki T, Hayashi T, Kajitani T (2007) Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-x Mg x O2 (0 ≤ lic ">x ≤ 0.05). J Chem Eng Jpn 40:1205–1209CrossRef
    29.Benko FA, Koffyberg FP (1987) Opto-electronic properties of p- and n-type delafossite, CuFeO2. J Phys Chem Solids 48:431–434CrossRef
    30.Rogers DB, Shannon RD, Prewitt CT, Gillson JL (1971) Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure. J Inorg Chem 10:723–727CrossRef
    31.Shawn Chatman, Pearce Carolyn I, Rosso Kevin M (2015) Charge transport at Ti-doped hematite (001)/aqueous interfaces. Chem Mater 27:1665–1673CrossRef
    32.Farrell L, Fleischer K, Caffrey D, Mullarkey D, Norton E, Shvets IV (2015) Conducting mechanism in the epitaxial p -type transparent conducting oxide Cr2O3:Mg. Phys Rev B 91:125202CrossRef
  • 作者单位:Ya-Hui Chuai (1)
    Xin Wang (1)
    Hong-Zhi Shen (1)
    Ya-Dan Li (2)
    Chuan-Tao Zheng (1) (3)
    Yi-Ding Wang (1)

    1. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
    2. College of Physics, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
    3. Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Delafossite-type CuCr1−lic ">x Zn x O2 (x = 0, 0.03, 0.05, 0.07, 0.1) conductive oxides were synthesized by sol–gel method, and the effects of Zn-doping on morphology, structure, and electrical properties of the CuCr1−lic ">x Zn x O2 oxides were investigated. Based on X-ray diffraction (XRD) and Raman spectrum, the crystalline quality of the oxides is improved by the suitable substitution of Cr by Zn. The X-ray photoelectron spectroscopy (XPS) spectra reveal the chemical state of Zn is +2. The Hall and Seebeck coefficients of the pellet samples display a positive sign, indicating p-type conductive characteristics of the obtained oxides. The temperature-dependent resistivity of the oxides is proven to be consistent with small polaron hopping. For the three oxide samples with x = 0, 0.05, and 0.1, the activation energies for the polaron hopping between Zn2+ and Cr3+ sites are 54, 41.5, 32 meV, respectively, which is found to decrease with the increase of Zn content. The electrical conductivity can be remarkably improved by Zn-doping due to the small polaron hopping activation energy. These properties render this material promising as transparent electrode in optoelectronic industry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700