Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils
详细信息    查看全文
  • 作者:Hui Li ; Jun Lu ; Qu-Sheng Li ; Bao-Yan He…
  • 关键词:Acid ; volatile sulfide ; Heavy metal ; Salinity ; Leaching ; Reclamation ; Tidal sediment
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:99-110
  • 全文大小:743 KB
  • 参考文献:Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12(13), 1441–1453.CrossRef
    Ankley, G. T., Ditoro, D. M., & Hansen, D. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15(11), 2056–2066.CrossRef
    Chapman, P. M., Wang, F. Y., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal Fisheries and Aquatic Science, 55(23), 2221–2243.CrossRef
    Chen, W., Chen, B. B., & Fang, M. (1998). Studies on the increasing of pH value and alkalization of seashore saline soil during its desalting in Liaodong Peninsula. Journal of Nanjing Agricultural University, 21(6), 59–64.
    Cooper, D. C., & Morse, J. W. (1998). Extractability of metal sulfide minerals in acidic solutions: Application to environmental studies of trace metal contamination within anoxic sediments. Environmental Science and Technology, 32(3), 1076–1078.CrossRef
    Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology, 26(6), 96–101.CrossRef
    Du Laing, G., Bogaert, N., Tack, F. M. G., Verloo, M. G., & Hendrickx, F. (2002). Heavy metal contents (Cd, Cu, Zn) in spiders (Pirata piraticus) living in intertidal sediments of the river Scheldt estuary (Belgium) as affected by substrate characteristics. Science of the Total Environment, 289(11), 71–81.CrossRef
    Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine Coastal and Shelf Science, 77(14), 589–602.CrossRef
    Fang, T., Li, X. D., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61(12), 420–431.CrossRef
    Gao, X. L., Li, P. M., & Chen, C. T. A. (2013). Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Marine Pollution Bulletin, 72(8), 281–288.CrossRef
    Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International, 29(11), 619–629.CrossRef
    He, J., Lü, C. W., Fan, Q. Y., Xue, H. X., & Bao, J. H. (2011). Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environmental Earth Science, 64(13), 2025–2037.CrossRef
    Jiang, M., Lu, X. G., Yang, Q., & Tong, S. Z. (2006). Iron biogeochemical cycle and its environmental effect in wetlands. Acta Pedologica Sinica, 43(7), 493–499. (in Chinese).
    Leung, H. M., Leung, A. O. W., Wang, H. S., Ma, K. K., Liang, Y., Ho, K. C., et al. (2014). Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Marine Pollution Bulletin, 78(11), 235–245.CrossRef
    Li, Q. S., Chen, X. J., Luo, X., Cui, Z. H., Shi, L., Wang, L. L., et al. (2012). Phytoavailability of heavy metals in tidal flat soils after fresh water leaching. Ecotoxicology and Environmental Safety, 79(6), 22–27.CrossRef
    Li, Q. S., Liu, Y. N., Du, Y. F., Cui, Z. H., Shi, L., Wang, L. L., et al. (2011). The behavior of heavy metals in tidal flat sediments during fresh water leaching. Chemosphere, 82(5), 834–838.CrossRef
    Li, Q. S., Wu, Z. F., Chu, B., Zhang, N., Cai, S. S., & Fang, J. H. (2007). Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 149(7), 158–164.CrossRef
    Liu, J. C., Yan, C. L., Spencer, K. L., Zhang, R. F., & Lu, H. L. (2010). The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Marine Pollution Bulletin, 60(8), 1209–1216.CrossRef
    Long, E. R., Field, J. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical quality guideline. Environmental Toxicology and Chemistry, 17(14), 714–727.CrossRef
    Loser, C., Zehnsdorf, A., Hoffmann, P., & Seidel, H. (2007). Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: Estimate of metal removal efficiency. Chemosphere, 66(7), 1699–1705.CrossRef
    McGrath, J. A., Paquin, P. R., & Di Toro, D. M. (2002). Use of the SEM and AVS approach in predicting metal toxicity in sediments. Fact Sheet on Environmental Risk Assessment, International Council on Mining and Metals, London, UK, 10, 1–7.
    Nizoli, E. C., & Luiz-Silva, W. (2012). Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environmental Geochemistry and Health, 34(10), 263–272.CrossRef
    Norvell, W. A., Wu, J., Hopkins, D. G., & Welch, R. M. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of Amercia Journal, 64(7), 2162–2168.CrossRef
    O’day, P. A., Carroll, S. A., Randall, S., Anderson, S. L., Jelinski, J., & Knezovich, J. P. (2000). Metal speciation and bioavailability in contaminated estuary sediments; Alameda naval air station, California. Environmental Science & Technology, 34(9), 3665–3673.CrossRef
    Oehm, N. J., Luben, T. J., & Ostrofsky, M. J. (1997). Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiology, 345(7), 79–85.CrossRef
    Poot, A., Meerman, E., Gillissen, F., & Koelmans, A. A. (2009). A kinetic approach to evaluate the association of acid volatile sulfide and simultaneously extracted metals in aquatic sediments. Environmental Toxicology and Chemistry, 28(7), 711–717.CrossRef
    Prica, M., Dalmacija, B., Dalmacija, M., Agbaba, J., Krcmar, D., Trickovic, J., et al. (2010). Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Ecotoxicology and Environmental Safety, 73(8), 1370–1377.CrossRef
    Prica, M., Dalmacija, B., Roncevic, S., Krcmar, D., & Becelic, M. (2008). A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Science of the Total Environment, 389(10), 235–244.CrossRef
    Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Materials, 84(23), 297–319.CrossRef
    Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(8), 844–851.CrossRef
    Van den Berg, G. A., Loch, J. P. G., Van der Heijdt, L. M., & Zwolsman, J. J. G. (1998). Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river meuse in The Netherlands. Environmental Toxicology and Chemistry, 17(6), 758–763.CrossRef
    Van Griethuysen, C., Van Baren, J., Peeters, E. T. H. M., & Koelmans, A. A. (2004). Trace metal availability and effects on benthic community structure in floodplain lakes. Environmental Toxicology and Chemistry, 23(14), 668–681.CrossRef
    Yang, Y. F., Chen, F. R., Zhang, L., Liu, J. S., Wu, S. J., & Kang, M. L. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64(9), 1947–1955.CrossRef
    Yin, H., & Fan, C. (2011). Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Archives of Environmental Contamination and Toxicology, 60(11), 565–575.CrossRef
    Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(9), 4086–4094.CrossRef
    Zhang, H. G., Cui, B. S., & Zhang, K. J. (2011). Heavy metal distribution of natural and reclaimed tidal riparian wetlands in south estuary, China. Journal of Environmental Science-China, 23(10), 1937–1946.CrossRef
    Zhang, X. S., & Zhang, L. J. (2007). Acid volatile sulfide and simultaneously extracted metals in tidal flat sediments of Jiaozhou Bay, China. Journal of Ocean University of China, 6(6), 137–142.CrossRef
  • 作者单位:Hui Li (1) (2) (3)
    Jun Lu (1) (2)
    Qu-Sheng Li (1) (2)
    Bao-Yan He (1) (2)
    Xiu-Qin Mei (1) (2)
    Dan-Ping Yu (1) (2)
    Zhi-Min Xu (1) (2)
    Shi-Hong Guo (1) (2)
    Hui-Jun Chen (1) (2)

    1. School of Environment, Jinan University, Guangzhou, 510632, China
    2. Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong Province, Guangzhou, 510632, China
    3. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510632, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Atmospheric Protection, Air Quality Control and Air Pollution
    Public Health
  • 出版者:Springer Netherlands
  • ISSN:1573-2983
文摘
Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats. Keywords Acid-volatile sulfide Heavy metal Salinity Leaching Reclamation Tidal sediment

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700