A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes
详细信息    查看全文
  • 作者:Tao Ke (1) (2)
    Su Liang (3)
    Jin Huang (3)
    Han Mao (2)
    Jibao Chen (1)
    Caihua Dong (2)
    Junyan Huang (2)
    Shengyi Liu (2)
    Jianxiong Kang (4)
    Dongqi Liu (4)
    Xiangdong Ma (3)
  • 关键词:antimicrobial peptide ; high throughput ; Npro ; prokaryotic expression
  • 刊名:BMC Biotechnology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:488KB
  • 参考文献:1. Koczulla AR, Bals R: Antimicrobial peptides: current status and therapeutic potential. / Drugs 2003,63(4):389鈥?06. CrossRef
    2. Reddy KV, Yedery RD, Aranha C: Antimicrobial peptides: premises and promises. / Int J Antimicrob Agents 2004,24(6):536鈥?47. CrossRef
    3. Dubin A, Mak P, Dubin G, Rzychon M, Stec-Niemczyk J, Wladyka B, Maziarka K, Chmiel D: New generation of peptide antibiotics. / Acta Biochim Pol 2005,52(3):633鈥?38.
    4. Boman HG: Antibacterial peptides: key components needed in immunity. / Cell 1991,65(2):205鈥?07. CrossRef
    5. Boman HG: Peptide antibiotics and their role in innate immunity. / Annu Rev Immunol 1995, 13:61鈥?2. CrossRef
    6. Li Y: Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli . / Biotechnol Appl Biochem 2009,54(1):1鈥?. CrossRef
    7. van't Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV: Antimicrobial peptides: properties and applicability. / Biol Chem 2001,382(4):597鈥?19. CrossRef
    8. Silverstein KA, Graham MA, Paape TD, VandenBosch KA: Genome organization of more than 300 defensin-like genes in Arabidopsis . / Plant Physiol 2005,138(2):600鈥?10. CrossRef
    9. Pestana-Calsa MC, Ribeiro IL, Calsa T Jr: Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species. / Curr Protein Pept Sci 2010,11(3):199鈥?09. CrossRef
    10. Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang G: A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. / BMC Genomics 2004,5(1):56. CrossRef
    11. Gard AL, Lenz PH, Shaw JR, Christie AE: Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. / Gen Comp Endocrinol 2009,160(3):271鈥?87. CrossRef
    12. Christie AE: Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. / Gen Comp Endocrinol 2008,157(2):174鈥?85. CrossRef
    13. Belarmino LC, Capriles PV, Crovella S, Dardene LE, Benko-Iseppon AM: EST- database search of plant defensins - an example using sugarcane, a large and complex genome. / Curr Protein Pept Sci 2010,11(3):248鈥?54. CrossRef
    14. Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA: Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. / Plant J 2007,51(2):262鈥?80. CrossRef
    15. Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R: Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. / Proc Natl Acad Sci USA 2009,106(16):6579鈥?584. CrossRef
    16. Achmuller C, Kaar W, Ahrer K, Wechner P, Hahn R, Werther F, Schmidinger H, Cserjan-Puschmann M, Clementschitsch F, Striedner G, Bayer K, Jungbauer A, Auer B: N(pro) fusion technology to produce proteins with authentic N termini in E. coli . / Nat Methods 2007,4(12):1037鈥?043. CrossRef
    17. Lee JH, Kim JH, Hwang SW, Lee WJ, Yoon HK, Lee HS, Hong SS: High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. / Biochem Biophys Res Commun 2000,277(3):575鈥?80. CrossRef
    18. Arnau J, Lauritzen C, Petersen GE, Pedersen J: Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. / Protein Expr Purif 2006,48(1):1鈥?3. CrossRef
    19. Stark R, Meyers G, Rumenapf T, Thiel HJ: Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. / J Virol 1993,67(12):7088鈥?095.
    20. Cheng X, Lu W, Zhang S, Cao P: Expression and purification of antimicrobial peptide CM4 by Npro fusion technology in E. coli . / Amino Acids 2010,39(5):1545鈥?552. CrossRef
    21. Jungbauer A, Kaar W: Current status of technical protein refolding. / J Biotechnol 2007,128(3):587鈥?96. CrossRef
    22. Zhang Z, Ke T, Zhou Y, Ma X, Ma L: High expression of antimicrobial peptide Cecropin AD in Escherichia coli by fusion with EDDIE. / Sheng Wu Gong Cheng Xue Bao 2009,25(8):1247鈥?253.
    23. Heyman JA, Cornthwaite J, Foncerrada L, Gilmore JR, Gontang E, Hartman KJ, Hernandez CL, Hood R, Hull HM, Lee WY, Marcil R, Marsh EJ, Mudd KM, Patino MJ, Purcell TJ, Rowland JJ, Sindici ML, Hoeffler JP: Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. / Genome Res 1999,9(4):383鈥?92.
    24. Zhu D, Zhong X, Tan R, Chen L, Huang G, Li J, Sun X, Xu L, Chen J, Ou Y, Zhang T, Yuan D, Zhang Z, Shu W, Ma L: High-throughput cloning of human liver complete open reading frames using homologous recombination in Escherichia coli. / Anal Biochem 2010,397(2):162鈥?67. CrossRef
    25. Muyrers JP, Zhang Y, Stewart AF: Techniques: Recombinogenic engineering-new options for cloning and manipulating DNA. / Trends Biochem Sci 2001,26(5):325鈥?31. CrossRef
    26. Iizasa E, Nagano Y: Highly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/Escherichia coli shuttle vectors. / Biotechniques 2006,40(1):79鈥?3. CrossRef
    27. Olieric N, Kuchen M, Wagen S, Sauter M, Crone S, Edmondson S, Frey D, Ostermeier C, Steinmetz MO, Jaussi R: Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. / BMC Biotechnol 2010, 10:56. CrossRef
    28. Wang Z, Wang G: APD: the Antimicrobial Peptide Database. / Nucleic Acids Res 2004,32(Database):D590鈥?92. CrossRef
    29. Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P: Ultrasensitive assays for endogenous antimicrobial polypeptides. / J Immunol Methods 1991,137(2):167鈥?73. CrossRef
  • 作者单位:Tao Ke (1) (2)
    Su Liang (3)
    Jin Huang (3)
    Han Mao (2)
    Jibao Chen (1)
    Caihua Dong (2)
    Junyan Huang (2)
    Shengyi Liu (2)
    Jianxiong Kang (4)
    Dongqi Liu (4)
    Xiangdong Ma (3)

    1. Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China
    2. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No.2 Xudong Second Road, Wuhan, 430062, China
    3. Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
    4. School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
  • ISSN:1472-6750
文摘
Background To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity. Results Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia. Conclusions The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700