Why can a free-falling cat always manage to land safely on its feet?
详细信息    查看全文
  • 作者:Shengchao Zhen ; Kang Huang ; Han Zhao ; Ye-Hwa Chen
  • 关键词:Free ; falling cat ; Udwadia–Kalaba formulation ; Equation of motion
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:79
  • 期:4
  • 页码:2237-2250
  • 全文大小:782 KB
  • 参考文献:1. Appell, P (1899) Sur une Forme Generale des Equations de la Dynamique. Comptes rendus de l’Academie des sciences 129: pp. 459-460
    2. Batterman, RW (2003) Falling cats, parallel parking, and polarized light. Stud. Hist. Philos. Mod. Phys. 129: pp. 1-40
    3. Baumgarte, J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1: pp. 1-16 CrossRef
    4. Bjerhammer, A (1951) Rectangular reciprocal matrices with special reference to geodetic calculations. Bull. Geod. 52: pp. 188-220 CrossRef
    5. Dirac, PAM (1964) Lectures in Quantum Mechanics. Yeshiva University, New York
    6. Gauss, CF (1829) Uber ein neues allgemeines Grundgsetz der Mechanik. Journal of die reine und angewandte Mathematik 4: pp. 232-235 CrossRef
    7. Ge, X, Chen, L (2007) Optimal control of nonholonomic motion planning for a free-falling cat. Appl. Math. Mech. 7: pp. 601-607 CrossRef
    8. Guyou, E (1891) Note Sur Les Approximations Numeriques. Kessinger Publishing, Montana
    9. Gibbs, JW (1879) On the fundamental formulae of dynamics. Am. J. Math. 2: pp. 49-64 CrossRef
    10. Kane, T.R.: Dynamics of nonholonomic systems. J. Appl. Mech. 28(4), 574-78 (1961)
    11. Kane, TR, Scher, MP (1969) A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5: pp. 663-670 CrossRef
    12. Kane, TR (1978) Dynamics. Stanford University, Stanford, CA
    13. Kane, T.R., Levinson, D.A.: Multibody dynamics. J. Appl. Mech. 50, 1071-078 (1983)
    14. Kane, TR, Levinson, DA (1985) Dynamics: Theory and Application. McGraw-Hill, New York
    15. Lagrange, J.L.: Mechanique Analytique. Mme ve Courcier, Paris (1787)
    16. Liu, Y.Z.: On the turning motion of a free-falling cat. Acta Mech. Sin. 4, 388-93 (1982) (In Chinese)
    17. Loitsyansky, AI (1953) Theoretical Mechanics. Saint Petersburger, Moscow
    18. Marey, M (1894) Méchanique Animale. La Nature 119: pp. 596-597
    19. McDonald, DA (1960) How does a cat fall on its feet?. New Sci. 7: pp. 1647-1649
    20. Montgomery, R (1993) Gauge theory of the falling cat. Am. Math. Soc. 1: pp. 193-218
    21. Moore, EH (1920) On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26: pp. 294-395 CrossRef
    22. Pars, LA (1965) A Treatise on Analytical Dynamics. Ox Bow Press, Connecticut
    23. Penrose, R (1955) A generalized inverse of matrices. Proc. Cambr. Philos. Soc. 51: pp. 404-413 CrossRef
    24. Udwadia, FE, Kalaba, RE (1992) A new perspective on constrained motion. Proc. R. Soc. 439: pp. 407-410 CrossRef
    25. Udwadia, FE, Kalaba, RE (1996) Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge CrossRef
    26. Udwadia, FE, Kalaba, RE (2001) Explicit equations of motion for mechanical systems with non-ideal constraints. J. Appl. Mech. 68: pp. 462-467 CrossRef
    27. Udwadia, FE, Kalaba, RE (2005) On constrained motion. Appl. Math. Comput. 164: pp. 313-320 CrossRef
    28. Udwadia, FE, Phohomsiri, P (2006) Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. 462: pp. 2097-2117 CrossRef
    29. Zhao, H, Zhen, SC, Chen, YH (2013) Dynamic modeling and simulation of multibody systems using the Udwadia–Kalaba
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Udwadia–Kalaba equation is a simple, aesthetic and thought-provoking description of the world at a very fundamental level. It is about the way systems of bodies move. We creatively apply the Udwadia–Kalaba approach to study falling cat’s movements. The cat is modeled as a constrained discrete dynamical system. In an alternative way, Udwadia–Kalaba formulation is used for analysis of the falling cat’s dynamics. With this novel approach, we can easily obtain the dynamical model and get the explicit analytic form of the general equations of motion of the falling cat. The surprise phenomenon (that a cat when dropped at rest with its feet pointing up can always manage to right itself and land safely on its feet) is observed through numerical simulation based on the constructed dynamical model. Unmatched ease, clarity and elegance of the Udwadia–Kalaba formulation for solving the falling cat problem (constrained discrete dynamical system or multibody system) are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700