Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution
详细信息    查看全文
  • 作者:Min Zhu (1)
    Cuiwei Du (1)
    Xiaogang Li (1)
    Zhiyong Liu (1)
    Shengrong Wang (1)
    Tianliang Zhao (1)
    Jinghuan Jia (1)
  • 关键词:X80 pipeline steel ; stress corrosion cracking ; strength and microstructure ; hydrogen embrittlement
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:23
  • 期:4
  • 页码:1358-1365
  • 全文大小:1,355 KB
  • 参考文献:1. G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels. Part I: Pitting and Cracking Occurrence, / Acta. Mater., 2007, 55(1), p 29鈥?2 CrossRef
    2. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Pre-cracked X70 Pipeline Steel in a Concentrated Carbonate/Bicarbonate Solution, / Corros. Sci., 2010, 52, p 960鈥?68 CrossRef
    3. A. Mustapha, E.A. Charles, and D. Hardie, Evaluation of Environment-Assisted Cracking Susceptibility of a Grade X100 Pipeline Steel, / Corros. Sci., 2012, 54, p 5鈥? CrossRef
    4. A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical Impedance Spectroscopy Analysis of X70 Pipeline Steel Stress Corrosion Cracking in High pH Carbonate Solution, / Corros. Sci., 2012, 61, p 111鈥?22 CrossRef
    5. M.A. Aran and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, / Mater. Sci. Eng. A, 2011, 528, p 4927鈥?940 CrossRef
    6. Y.W. Kang, W.X. Chen, R. Kania, G.V. Boven, and R. Worthingham, Simulation of Crack Growth During Hydrostatic Testing of Pipeline Steel in Near-Neutral pH Environment, / Corros. Sci., 2011, 53, p 968鈥?75 CrossRef
    7. B.T. Lu, J.L. Luo, and P.R. Norton, Environmentally Assisted Cracking Mechanism of Pipeline Steel in Near-Neutral pH Groundwater, / Corros. Sci., 2010, 52, p 1787鈥?795 CrossRef
    8. E. SadeghiMeresht, T. ShahrabiFarahani, and J. Neshati, Failure Analysis of Stress Corrosion Cracking Occurred in A Gas Transmission Steel Pipeline, / Eng. Fail. Anal., 2011, 18, p 963鈥?70 CrossRef
    9. T.R. Jack, B. Erno, K. Krist, and R. Fessler, Generation of Near Neutral pH and High pH SCC Environments on Buried Pipelines, / Proceedings of Corrosion 2000. Paper 00362. NACE International, Houston, TX, 2000 (Corrosion 2000. Paper No. 363, NACE, Houston, 2000)
    10. C. Manfredi and J.L. Otegui, Failure by SCC in Buried Pipelines, / Eng. Fail. Anal., 2002, 9, p 495鈥?09 CrossRef
    11. M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, / Corros. Sci., 2009, 51, p p119鈥損128 CrossRef
    12. R.N. Parkins, Jr., E.K. Blanchard, and E.S. Delanty, Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH, / Corrosion, 1994, 50(5), p 394鈥?08 CrossRef
    13. W. Chen, F. King, and E. Vokes, Characteristics of Near-Neutral-pH Stress Corrosion Cracks in An X-65 Pipeline, / Corrosion, 2002, 58(3), p 267鈥?75 CrossRef
    14. J.J. Park, S.I. Pyun, K.H. Na, S.M. Lee, and Y.T. Kho, Effect of Passivity of the Oxide Film in Low-pH Stress Corrosion Cracking of API5LX-65 Pipeline Steel in Bicarbonate Solution, / Corrosion, 2002, 58(4), p 329鈥?36 CrossRef
    15. B.Y. Fang, A. Atrens, J.Q. Wang, E.H. Han, Z.Y. Zhu, and W. Ke, Review of Stress Corrosion Cracking of Pipeline Steels in 鈥淟ow鈥?and 鈥淗igh鈥?pH Solutions, / J. Mater. Sci., 2003, 38(1), p 127鈥?32 CrossRef
    16. R.N. Parkins, Mechanistic Aspects of Intergranular Stress Corrosion Cracking of Ferritic Steels, / Corrosion, 1996, 52(5), p 363鈥?74 CrossRef
    17. B.T. Lu, F. Song, M. Gao, and M. Elboujdaini, Crack Growth Model for Pipelines Exposed to Concentrated Carbonate-Bicarbonate Solution with High pH, / Corros. Sci., 2010, 52, p 4064鈥?072 CrossRef
    18. M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate-Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, / Electrochim. Acta, 2008, 53, p 2831鈥?836 CrossRef
    19. F.M. Song, Predicting the Mechanisms and Crack Growth Rates of Pipelines Undergoing Stress Corrosion Cracking at High pH, / Corros. Sci., 2009, 51, p 2657鈥?674 CrossRef
    20. C. Lea, Stress Corrosion Cracking and Temper Brittleness Effect of Phosphorus Grain Boundary Segregation in Low-Alloy Steel, / Met. Sci., 1980, 14, p 107鈥?12 CrossRef
    21. G. Trauber and H.J. Grabke, Electrochemical and Auger-Spectroscopic Studies on the Intergranular Corrosion of Iron in Nitrate Solutions, / Corros. Sci., 1979, 19, p 793鈥?98 CrossRef
    22. J. Flis, The Passivation of Iron-Carbon Alloys in Acidic Phosphate Solution and Its Relation to Stress Corrosion Cracking, / Corros. Sci., 1985, 25, p 317鈥?30 CrossRef
    23. J.Q. Wang, A. Atrens, D.R. Cousens, P.M. Kelly, C. Nockolds, and S. Bulcock, Measurement of Grain Boundary Composition for X52 Pipeline Steel, / Acta Mater., 1998, 46, p 5677鈥?687 CrossRef
    24. J.Q. Wang, A. Atrens, D.R. Cousens, C. Nockolds, and S. Bulcock, Boundary Characterisation of X65 Pipeline Steel Using Analytical Electron Microscopy, / J. Mater. Sci., 1999, 34, p 1711鈥?719 CrossRef
    25. J.Q. Wang, A. Atrens, D.R. Cousens, and N.N. Kinaev, Microstructure of X52 and X65 Pipeline Steels, / J. Mater. Sci., 1999, 34, p 1721鈥?728 CrossRef
    26. J.Q. Wang, A. Atrens, and D.R.G. Mitchell, Grain Boundary Characterization of X42 Pipeline Steel in Relation to IGSCC, / Proceedings of Corrosion 2001. Paper 01210. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 210, NACE, Houston, 2001)
    27. M.J. Danielson, R.H. Jones, and P. Dusek, Effect of Microstructure and Microchemistry on the SCC Behavior of Archival and Modern Pipeline Steels in A High pH Environment, / Proceedings of Corrosion 2001. Paper 01211. NACE International, Houston, TX, 2001 (Corrosion 2001. Paper No. 211, NACE, Houston, 2001)
    28. P. Liang, Corrosion Behavior and Mechanism of X80 Pipeline Steel in Ku鈥檈rle Soil Simulated Solution. PhD Thesis, University of Science and Technology Beijing 2008 [in Chinese]
    29. B. Kumkum and U.K. Chatterjee, Hydrogen Permeation and Hydrogen Content Under Cathodic Charging in HSLA 80 and HSLA 100 Steels, / Scripta Mater., 2001, 44(2), p 213鈥?16 CrossRef
    30. Chinese National Standard for Stress Corrosion Cracking Tests, GB T 15970, 2007
    31. Z.F. Wang and A. Atrens, Initiation of Stress Corrosion Cracking for Pipeline Steels in a Carbonate-Bicarbonate Solution, / Metall. Mater. Trans., 1996, 27A, p 2686鈥?691 CrossRef
    32. A.K. Pilkey, S.B. Lambert, and A. Plumtree, Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution, / Corrosion, 1995, 51(2), p 91鈥?6 CrossRef
    33. R.B. Rebak, Z. Xia, R. Safruddin, and S. Szklarska-Smialowska, Effect of Solution Composition and Electrochemical Potential on Stress Corrosion Cracking of X-52 Pipeline Steel, / Corrosion, 1996, 52(5), p 396鈥?05 CrossRef
    34. J. Li, M. Elboujdaini, B. Fang, R.W. Revie, and M.W. Phaneuf, Microscopy Study Intergranular Stress Corrosion Cracking of X-52 Line Pipe Steel, / Corrosion, 2006, 62(4), p 316鈥?22 CrossRef
    35. J.Q. Wang and A. Atrens, SCC Initiation for X65 Pipeline Steel in the 鈥淗igh鈥?pH Carbonate/Bicarbonate Solution, / Corros. Sci., 2003, 45(10), p 2199鈥?217 CrossRef
    36. C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang, Hydrogen-Induced Cracking and Healing Behaviour of X70 Steel, / J. Alloys Compd., 2009, 484, p 966鈥?72 CrossRef
    37. W.L. Zheng, Effect of Strength of Steels on the Susceptibility to Stress Corrosion Cracking, / J. Chin. Soc. Corros. Prot., 1984, 4, p 287鈥?94 ((in Chinese))
    38. W. Wang, Y.Y. Shan, and K. Yang, Study of High Strength Pipeline Steels with Different Microstructures, / Mater. Sci. Eng. A, 2009, 502, p 38鈥?4 CrossRef
    39. Z.P. Lu, T. Shoji, Y. Takeda, Y. Ito, A. Kai, and N. Tsuchiya, Effects of Loading Mode and Water Chemistry on Stress Corrosion Crack Growth Behavior of 316L HAZ and Weld Metal Materials in High Temperature Pure Water, / Corros. Sci., 2008, 50, p 625鈥?38 CrossRef
    40. H. Hoffmeister, Modeling the Effects of Local Anodic Acidification on Stress Corrosion Cracking of Nickel, / Corrosion, 2011, 67, p 1鈥?2 CrossRef
    41. B.G. Ateya and H.W. Pickering, The Distribution of Anodic and Cathodic Reaction Sites During Environmentally Assisted Cracking, / Corros. Sci., 1995, 37, p 1443鈥?453 CrossRef
    42. H. Guo, G.F. Li, X. Cai, and W. Yang, Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Solutions at Different Temperatures, / Acta Metall. Sin., 2004, 40, p 967鈥?71 ((in Chinese))
    43. I.M. Dmytrakh, Corrosion Fracture of Structural Metallic Materials: Effect of Electrochemical Conditions in Crack, / Strain, 2011, 47, p 427鈥?35 CrossRef
    44. X. Tang and Y.F. Cheng, Quantitative Characterization by Micro-electrochemical Measurements of the Synergism of Hydrogen, Stress and Dissolution on Near-Neutral pH Stress Corrosion Cracking of Pipelines, / Corros. Sci., 2011, 53, p 2927鈥?933 CrossRef
  • 作者单位:Min Zhu (1)
    Cuiwei Du (1)
    Xiaogang Li (1)
    Zhiyong Liu (1)
    Shengrong Wang (1)
    Tianliang Zhao (1)
    Jinghuan Jia (1)

    1. Corrosion and Protection Center, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People鈥檚 Republic of China
  • ISSN:1544-1024
文摘
The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700