A genomic perspective on the important genetic mechanisms of upland adaptation of rice
详细信息    查看全文
  • 作者:Jun Lyu (3)
    Baoye Li (4)
    Weiming He (5)
    Shilai Zhang (4)
    Zhiheng Gou (3)
    Jing Zhang (4)
    Liyun Meng (6)
    Xin Li (7)
    Dayun Tao (4)
    Wangqi Huang (4)
    Fengyi Hu (4)
    Wen Wang (3)

    3. CAS-Max Planck Junior Research Group
    ; State Key Laboratory of Genetic Resources and Evolution ; Kunming Institute of Zoology ; Chinese Academy of Sciences ; Kunming ; 650223 ; China
    4. Food Crops Research Institute
    ; Yunnan Academy of Agricultural Sciences ; Kunming ; 650205 ; China
    5. BGI-Shenzhen
    ; Shenzhen ; 518083 ; China
    6. Inner Mongolia Agricultural University
    ; Hohhot ; 010018 ; China
    7. Center for Epigenetics
    ; Johns Hopkins University School of Medicine Baltimore ; MD ; Baltimore ; 21205 ; USA
  • 关键词:Upland rice ; Upland adaptation ; Genetic mechanisms ; Phylogenetics ; Population structure ; Artificial selection
  • 刊名:BMC Plant Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,020 KB
  • 参考文献:1. Khush, GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35: pp. 25-34 23/A:1005810616885" target="_blank" title="It opens in new window">CrossRef
    2. Chang TT, VS (1975) Varietal diversity and morpho-agronomic characteristics of upland rice. Major research in upland rice, International Rice Research Institute, Baiios, Philippines
    3. Chang TT, LC, Tagumpay, O (1972) Agronomic and growth characteristics of upland and lowland rice varieties. Rice breeding, International Rice Research Institute, Baiios, Philippines
    An Overview of Upland Rice Research. Proceedings of the 1982 Bouake. Ivory Coast Upland Rice Workshop, International Rice Research Institute(IRRI), LOS BA脩OS, LAGUNA, PHILIPPINES
    Major Research in Upland Rice. International Rice Research Institute(IRRI), Baiios, Philippines
    4. Bernier, J, Atlin, GN, Serraj, R, Kumar, A, Spaner, D (2008) Review: breeding upland rice for drought resistance.
    5. Price, AH, Steele, KA, Moore, BJ, Barraclough, PB, Clark, LJ (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100: pp. 49-56 220050007" target="_blank" title="It opens in new window">CrossRef
    6. Cairns, JE, Audebert, A, Mullins, CE, Price, AH (2009) Mapping quantitative trait loci associated with root growth in upland rice (Oryza sativa L.) exposed to soil water-deficit in fields with contrasting soil properties. Field Crop Res 114: pp. 108-118 2009.07.009" target="_blank" title="It opens in new window">CrossRef
    7. Price, AH, Steele, KA, Moore, BJ, Jones, RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes II. Mapping quantitative trait loci for root morphology and distribution. Field Crop Res 76: pp. 25-43 290(02)00010-2" target="_blank" title="It opens in new window">CrossRef
    8. Zhu, JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: pp. 247-273 29" target="_blank" title="It opens in new window">CrossRef
    9. Thompson, AJ, Jackson, AC, Symonds, RC, Mulholland, BJ, Dadswell, AR, Blake, PS, Burbidge, A, Taylor, IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23: pp. 363-374 2000.00789.x" target="_blank" title="It opens in new window">CrossRef
    10. Iuchi, S, Kobayashi, M, Taji, T, Naramoto, M, Seki, M, Kato, T, Tabata, S, Kakubari, Y, Yamaguchi-Shinozaki, K, Shinozaki, K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27: pp. 325-333 2001.01096.x" target="_blank" title="It opens in new window">CrossRef
    11. Kasuga, M, Liu, Q, Miura, S, Yamaguchi-Shinozaki, K, Shinozaki, K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: pp. 287-291 CrossRef
    12. Garg, AK, Kim, JK, Owens, TG, Ranwala, AP, Choi, YD, Kochian, LV, Wu, RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99: pp. 15898-15903 252637799" target="_blank" title="It opens in new window">CrossRef
    13. Jang, IC, Oh, SJ, Seo, JS, Choi, WB, Song, SI, Kim, CH, Kim, YS, Seo, HS, Choi, YD, Nahm, BH, Kim, JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131: pp. 516-524 237" target="_blank" title="It opens in new window">CrossRef
    14. Xiong, L, Yang, Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: pp. 745-759 CrossRef
    15. Chen, H, Patterson, N, Reich, D (2010) Population differentiation as a test for selective sweeps. Genome Res 20: pp. 393-402 CrossRef
    16. Nielsen, R, Williamson, S, Kim, Y, Hubisz, MJ, Clark, AG, Bustamante, C (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15: pp. 1566-1575 252305" target="_blank" title="It opens in new window">CrossRef
    17. Lyu, J, Zhang, S, Dong, Y, He, W, Zhang, J, Deng, X, Zhang, Y, Li, X, Li, B, Huang, W, Wan, W, Yu, Y, Li, Q, Li, J, Liu, X, Wang, B, Tao, D, Zhang, G, Wang, J, Xu, X, Hu, F, Wang, W (2013) Analysis of elite variety tag SNPs reveals an important allele in upland rice. Nat Commun 4: pp. 2138 CrossRef
    18. Li, R, Li, Y, Kristiansen, K, Wang, J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: pp. 713-714 25" target="_blank" title="It opens in new window">CrossRef
    19. Xu, X, Liu, X, Ge, S, Jensen, JD, Hu, F, Li, X, Dong, Y, Gutenkunst, RN, Fang, L, Huang, L, Li, J, He, W, Zhang, G, Zheng, X, Zhang, F, Li, Y, Yu, C, Kristiansen, K, Zhang, X, Wang, J, Wright, M, McCouch, S, Nielsen, R, Wang, W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30: pp. 105-111 2050" target="_blank" title="It opens in new window">CrossRef
    20. Glaszmann, JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74: pp. 21-30 290078" target="_blank" title="It opens in new window">CrossRef
    21. Huang, X, Kurata, N, Wei, X, Wang, ZX, Wang, A, Zhao, Q, Zhao, Y, Liu, K, Lu, H, Li, W, Guo, Y, Lu, Y, Zhou, C, Fan, D, Weng, Q, Zhu, C, Huang, T, Zhang, L, Wang, Y, Feng, L, Furuumi, H, Kubo, T, Miyabayashi, T, Yuan, X, Xu, Q, Dong, G, Zhan, Q, Li, C, Fujiyama, A, Toyoda, A (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490: pp. 497-501 2" target="_blank" title="It opens in new window">CrossRef
    22. Tang, H, Peng, J, Wang, P, Risch, NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28: pp. 289-301 2/gepi.20064" target="_blank" title="It opens in new window">CrossRef
    23. Hu, HH, You, J, Fang, YJ, Zhu, XY, Qi, ZY, Xiong, LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: pp. 169-181 CrossRef
    24. Hong, JK, Choi, HW, Hwang, IS, Kim, DS, Kim, NH, du Choi, S, Kim, YJ, Hwang, BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227: pp. 539-558 25-007-0637-5" target="_blank" title="It opens in new window">CrossRef
    25. Gupta, S, Bharalee, R, Bhorali, P, Bandyopadhyay, T, Gohain, B, Agarwal, N, Ahmed, P, Saikia, H, Borchetia, S, Kalita, MC, Handique, AK, Das, S (2012) Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 12: pp. 543-563 2-012-0277-0" target="_blank" title="It opens in new window">CrossRef
    26. Wu, Q, Lin, J, Liu, JZ, Wang, X, Lim, W, Oh, M, Park, J, Rajashekar, CB, Whitham, SA, Cheng, NH, Hirschi, KD, Park, S (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol J 10: pp. 945-955 2.2012.00723.x" target="_blank" title="It opens in new window">CrossRef
    27. Price, AH, Steele, KA, Gorham, J, Bridges, JM, Moore, BJ, Evans, JL, Richardson, P, Jones, RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes I. Root distribution, water use and plant water status. Field Crop Res 76: pp. 11-24 290(02)00012-6" target="_blank" title="It opens in new window">CrossRef
    28. Liu, DD, Dong, QL, Fang, MJ, Chen, KQ, Hao, YJ (2012) Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. J Plant Physiol 169: pp. 1866-1873 2012.07.018" target="_blank" title="It opens in new window">CrossRef
    29. To, JP, Haberer, G, Ferreira, FJ, Deruere, J, Mason, MG, Schaller, GE, Alonso, JM, Ecker, JR, Kieber, JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: pp. 658-671 CrossRef
    30. Hirose, N, Makita, N, Kojima, M, Kamada-Nobusada, T, Sakakibara, H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48: pp. 523-539 22" target="_blank" title="It opens in new window">CrossRef
    31. Argyros, RD, Mathews, DE, Chiang, YH, Palmer, CM, Thibault, DM, Etheridge, N, Argyros, DA, Mason, MG, Kieber, JJ, Schaller, GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20: pp. 2102-2116 CrossRef
    32. Hill, K, Mathews, DE, Kim, HJ, Street, IH, Wildes, SL, Chiang, YH, Mason, MG, Alonso, JM, Ecker, JR, Kieber, JJ, Schaller, GE (2013) Functional characterization of type-B response regulators in the Arabidopsis cytokinin response. Plant Physiol 162: pp. 212-224 2.208736" target="_blank" title="It opens in new window">CrossRef
    33. Ulker, B, Somssich, IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7: pp. 491-498 2004.07.012" target="_blank" title="It opens in new window">CrossRef
    34. Zhang, Y, Wang, L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5: pp. 1 2148-5-1" target="_blank" title="It opens in new window">CrossRef
    35. Eulgem, T, Rushton, PJ, Robatzek, S, Somssich, IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: pp. 199-206 CrossRef
    36. Rabello, AR, Guimaraes, CM, Rangel, PH, da Silva, FR, Seixas, D, de Souza, E, Brasileiro, AC, Spehar, CR, Ferreira, ME, Mehta, A (2008) Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 9: pp. 485 2164-9-485" target="_blank" title="It opens in new window">CrossRef
    37. Cheong, YH, Pandey, GK, Grant, JJ, Batistic, O, Li, L, Kim, BG, Lee, SC, Kudla, J, Luan, S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: pp. 223-239 2007.03236.x" target="_blank" title="It opens in new window">CrossRef
    38. Umehara, M, Hanada, A, Yoshida, S, Akiyama, K, Arite, T, Takeda-Kamiya, N, Magome, H, Kamiya, Y, Shirasu, K, Yoneyama, K, Kyozuka, J, Yamaguchi, S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: pp. 195-200 272" target="_blank" title="It opens in new window">CrossRef
    39. Wang, H, Huang, Z, Chen, Q, Zhang, Z, Zhang, H, Wu, Y, Huang, D, Huang, R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55: pp. 183-192 CrossRef
    40. Zhao, K, Tung, CW, Eizenga, GC, Wright, MH, Ali, ML, Price, AH, Norton, GJ, Islam, MR, Reynolds, A, Mezey, J, McClung, AM, Bustamante, CD, McCouch, SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: pp. 467 CrossRef
    41. Xing, T, Wang, XJ, Malik, K, Miki, BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol Plant Microbe Interact 14: pp. 1261-1264 2001.14.10.1261" target="_blank" title="It opens in new window">CrossRef
    42. Ono, S (1971) Upland Rice Breeding in Japan. Tokyo, Japan Agricultural Research Quarterly
    43. Turner, TL, Bourne, EC, Von Wettberg, EJ, Hu, TT, Nuzhdin, SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42: pp. 260-263 CrossRef
    44. Huang, X, Wei, X, Sang, T, Zhao, Q, Feng, Q, Zhao, Y, Li, C, Zhu, C, Lu, T, Zhang, Z, Li, M, Fan, D, Guo, Y, Wang, A, Wang, L, Deng, L, Li, W, Lu, Y, Weng, Q, Liu, K, Huang, T, Zhou, T, Jing, Y, Lin, Z, Buckler, ES, Qian, Q, Zhang, QF, Li, J, Han, B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42: pp. 961-967 CrossRef
    45. Huang, N, Courtois, B, Khush, GS, Lin, HX, Wang, GL, Wu, P, Zheng, KL (1996) Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity 77: pp. 130-137 CrossRef
    46. Mu, P, Li, ZC, Li, CP, Zhang, HL, Wu, CM, Li, C, Wang, XK (2003) QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chinese Science Bulletin 48: pp. 2718-2724 2901763" target="_blank" title="It opens in new window">CrossRef
    47. Richards, E, Reichardt, M, Rogers, S (2001) Preparation of genomic DNA from plant tissue. Curr Protoc Mol Biol.
    48. Li, R, Li, Y, Fang, X, Yang, H, Wang, J, Kristiansen, K (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19: pp. 1124-1132 CrossRef
    49. Lam, HM, Xu, X, Liu, X, Chen, W, Yang, G, Wong, FL, Li, MW, He, W, Qin, N, Wang, B, Li, J, Jian, M, Wang, J, Shao, G, Sun, SS, Zhang, G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42: pp. 1053-1059 CrossRef
    50. Felsenstein J: PHYLIP -- Phylogeny Inference Package (Version 3.2). / Cladistics 1989, (5):164鈥?66.
    51. Patterson, N, Price, AL, Reich, D (2006) Population structure and eigenanalysis. PLoS Genet 2: pp. e190 20190" target="_blank" title="It opens in new window">CrossRef
    52. Nei, M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York
    53. Williamson, SH, Hubisz, MJ, Clark, AG, Payseur, BA, Bustamante, CD, Nielsen, R (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3: pp. e90 CrossRef
    54. Tanaka, T, Antonio, BA, Kikuchi, S, Matsumoto, T, Nagamura, Y, Numa, H, Sakai, H, Wu, J, Itoh, T, Sasaki, T, Aono, R, Fujii, Y, Habara, T, Harada, E, Kanno, M, Kawahara, Y, Kawashima, H, Kubooka, H, Matsuya, A, Nakaoka, H, Saichi, N, Sanbonmatsu, R, Sato, Y, Shinso, Y, Suzuki, M, Takeda, J, Tanino, M, Todokoro, F, Yamaquchi, K (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36: pp. D1028-D1033
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Cultivated rice consists of two important ecotypes, upland and irrigated, that have respectively adapted to either dry land or irrigated cultivation. Upland rice, widely adopted in rainfed upland areas in virtue of its little water requirement, contains abundant untapped genetic resources, such as genes for drought adaptation. With water shortage exacerbated and population expanding, the need for breeding crop varieties with drought adaptation becomes more and more urgent. However, a previous oversight in upland rice research reveals little information regarding its genetic mechanisms for upland adaption, greatly hindering progress in harnessing its genetic resources for breeding and cultivation. Results In this study, we selected 84 upland and 82 irrigated accessions from all over the world, phenotyped them under both irrigated and dry land environments, and investigated the phylogenetic relations and population structure of the upland ecotype using whole genome variation data. Further comparative analysis yields a list of differentiated genes that may account for the phenotypic and physiological differences between upland and irrigated rice. Conclusions This study represents the first genomic investigation in a large sample of upland rice, providing valuable gene list for understanding upland rice adaptation, especially drought-related adaptation, and its subsequent utilization in modern agriculture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700