A Bootstrap Method for Sum-of-Poles Approximations
详细信息    查看全文
  • 作者:Kuan Xu (1)
    Shidong Jiang (2)
  • 关键词:Rational approximation ; Sum ; of ; poles approximation ; Model reduction ; Balanced truncation method ; Square root method
  • 刊名:Journal of Scientific Computing
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:55
  • 期:1
  • 页码:16-39
  • 全文大小:1007KB
  • 参考文献:1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)
    2. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér and I.?Schur problems. Funct. Anal. Appl. 2, 269-81 (1968) CrossRef
    3. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and Riesz problems. Funct. Anal. Appl. 2(1), 1-8 (1968) CrossRef
    4. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Mat. Sb. 86, 34-5 (1971)
    5. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37, 1138-164 (2000) CrossRef
    6. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180, 270-96 (2002) CrossRef
    7. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Sch?dle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schr?dinger equations. Commun. Comput. Phys. 4, 729-96 (2008)
    8. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17-8 (2005) CrossRef
    9. Beylkin, G., Monzón, L.: On generalized Gaussian quadratures for exponentials and their applications. Appl. Comput. Harmon. Anal. 12, 332-73 (2002) CrossRef
    10. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32, 1761-788 (2010) CrossRef
    11. Causley, M., Petropolous, P., Jiang, S.: Incorporating the Havriliak-Negami dielectric model in numerical solutions of the time-domain Maxwell equations. J. Comput. Phys. 230, 3884-899 (2011) CrossRef
    12. Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, San Diego (1972)
    13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their / L ?/sup>-error bounds. Int. J. Control 39, 1115-193 (1984) CrossRef
    14. Gutknecht, M.H., Trefethen, L.N.: Real and complex Chebyshev approximation on the unit disk and interval. Bull., New Ser., Am. Math. Soc. 8, 455-58 (1983) CrossRef
    15. Gutknecht, M.H., Smith, J.O., Trefethen, L.N.: The Carathéodory-Fejér (CF) method for recursive digital filter design. IEEE Trans. Acoust. Speech Signal Process. 31, 1417-426 (1983) CrossRef
    16. Gutknecht, M.H.: Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval. J.?Approx. Theory 41, 257-78 (1984) CrossRef
    17. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47-06 (1999) CrossRef
    18. Hammarling, S.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J.?Numer. Anal. 2, 303-23 (1982) CrossRef
    19. Hardy, G.H.: On the mean value of the modulus of an analytic function. Proc. Lond. Math. Soc. s2_14, 269-77 (1915) CrossRef
    20. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)
    21. Jiang, S.: Fast evaluation of the nonreflecting boundary conditions for the Schr?dinger equation. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, New York (2001)
    22. Jiang, S., Greengard, L.: Efficient representation of nonreflecting boundary conditions for the time-dependent Schr?dinger equation in two dimensions. Commun. Pure Appl. Math. 61, 261-88 (2008) CrossRef
    23. Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115-22 (1987) CrossRef
    24. Lee, J., Greengard, L.: A fast adaptive numerical method for stiff two-point boundary value problems. SIAM J. Sci. Comput. 18, 403-29 (1997) CrossRef
    25. Li, J.R.: Low order approximation of the spherical nonreflecting boundary kernel for the wave equation. Linear Algebra Appl. 415, 455-68 (2006) CrossRef
    26. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696-714 (2010) CrossRef
    27. Lin, L., Lu, J., Ying, L., E, W.: Pole-based approximation of the Fermi-Dirac function. Chin. Ann. Math., Ser. B 30, 729-42 (2009) CrossRef
    28. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51, 289-03 (2004) CrossRef
    29. López-Fernández, M., Palencia, C., Sch?dle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332-350 (2006) CrossRef
    30. López-Fernández, M., Lubich, C., Sch?dle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015-037 (2008) CrossRef
    31. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503-14 (2004) CrossRef
    32. Lubich, C., Sch?dle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24, 161-82 (2002) CrossRef
    33. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33, 971-96 (1996) CrossRef
    34. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17-2 (1981) CrossRef
    35. Muller, D.: A method for solving algebraic equations using an automatic computer. Math. Tables Other Aids Comput. 10, 208-15 (1956) CrossRef
    36. Peller, V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003) CrossRef
    37. Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415, 322-43 (2006) CrossRef
    38. Penzl, T.: Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8, 33-8 (1998) CrossRef
    39. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)
    40. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)
    41. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729-33 (1989) CrossRef
    42. Sch?dle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421-38 (2006) CrossRef
    43. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)
    44. Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37, 297-20 (1981) CrossRef
    45. Trefethen, L.N.: Chebyshev approximation on the unit disk. In: Werner, K.E., Wuytack, L., Ng, E. (eds.) Computational Aspects of Complex Analysis, pp. 309-23. D.?Reidel Publishing, Dordrecht (1983) CrossRef
    46. Trefethen, L.N., Gutknecht, M.H.: The Carathéodory-Fejér method for real rational approximation. SIAM J. Numer. Anal. 20, 420-36 (1983) CrossRef
    47. Trefethen, L.N., Weideman, J., Schmelzer, T.: Talbot quadratures and rational approximations. BIT Numer. Math. 46, 653-70 (2006) CrossRef
    48. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20, 699-18 (1998) CrossRef
  • 作者单位:Kuan Xu (1)
    Shidong Jiang (2)

    1. One Research Circle, GE Global Research, Niskayuna, NY, 12309, USA
    2. Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
  • ISSN:1573-7691
文摘
A bootstrap method is presented for finding efficient sum-of-poles approximations of causal functions. The method is based on a recursive application of the nonlinear least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal. 37:1138-164, 2000), followed by the balanced truncation method for model reduction in computational control theory as a final optimization step. The method is expected to be useful for a fairly large class of causal functions encountered in engineering and applied physics. The performance of the method and its application to computational physics are illustrated via several numerical examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700