Tuning the dimensionality of ZnO nanowires through thermal treatment: An investigation of growth mechanism
详细信息    查看全文
  • 作者:Po-Hsun Shih (1)
    Hsuan-Jung Hung (1)
    Yuan-Ron Ma (1)
    Sheng-Yun Wu (1)
  • 关键词:nanocrystalline materials ; short ; circuit diffusion ; lattice diffusion ; nanowires ; ZnO ; 61.46.Hk ; 61.82.Fk ; 62.23.Hj ; 66.30.Pa
  • 刊名:Nanoscale Research Letters
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:1
  • 全文大小:643KB
  • 参考文献:1. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P: Room-temperature ultraviolet nanowire nanolasers. / Science 2001, 292:1897-899. CrossRef
    2. K?nenkamp R, Word RC, Schlegel C: Vertical nanowire light-emitting diode. / Appl Phys Lett 2004, 85:6004-006. CrossRef
    3. Nadarajah A, Word RC, Meiss J, K?nenkamp R: Flexible inorganic nanowire light-emitting diode. / Nano Lett 2008, 8:534-37. CrossRef
    4. Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J: Hydrogen-selective sensing at room temperature with ZnO nanorods. / Appl Phys Lett 2005, 86:243503. CrossRef
    5. Law M, Greene LE, Johnson JC, Saykally R, Yang P: Nanowire dye-sensitized solar cells. / Nat Mater 2005, 4:455-59. CrossRef
    6. Alivisatos AP: Semiconductor clusters, nanocrystals, and quantum dots. / Science 1996, 271:933-37. CrossRef
    7. Banin U, Cao YW, Katz D, Millo O: Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. / Nature 1999, 400:542-44. CrossRef
    8. Zhou J, Ding Y, Deng SZ, Gong L, Xu NS, Wang ZL: Three-dimensional tungsten oxide nanowire networks. / Adv Mater 2005, 17:2107-110. CrossRef
    9. Srinivasarao M, Collings D, Philips A, Patel S: Three-dimensionally ordered array of air bubbles in a polymer film. / Science 2001, 292:79-3. CrossRef
    10. Wang S, Zeng C, Lai S, Juang YJ, Yang Y, Lee LJ: Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. / Adv Mater 2005, 17:1177-182. CrossRef
    11. Wang RC, Liu CP, Huang JL, Chen SJ: ZnO symmetric nanosheets integrated with nanowalls. / Appl Phys Lett 2005, 87:053103. CrossRef
    12. Fan HJ, Scholz R, Kolb FM, Zacharias M: Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. / Appl Phys Lett 2004, 85:4142-144. CrossRef
    13. Xinzheng L, Yang J, Xinmei L, Wenjun W, Wang Binbin Wu, Di LC, Yugang Z, Honghai Z: Large-scale growth of a novel hierarchical ZnO three-dimensional nanostructure with preformed patterned substrate. / Cryst Growth Des 2011, 11:3837-843. CrossRef
    14. Lee WW, Yi J, Kim SB, Kim YH, Park HG, Park WI: Morphology-controlled three-dimensional nanoarchitectures produced by exploiting vertical and in-plane crystallographic orientations in hydrothermal ZnO crystals. / Cryst Growth Des 2011, 11:4927-932. CrossRef
    15. Gao PX, Lao CS, Hughes WL, Wang ZL: Three-dimensional interconnected nanowire networks of ZnO. / Chem Phys Lett 2005, 408:174-78. CrossRef
    16. Song HS, Zhang WJ, Cheng C, Tang YB, Luo LB, Chen X, Luan CY, Meng XM, Zapien JA, Wang N, Lee CS, Bello I, Lee ST: Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. / Cryst Growth Des 2011, 11:147-53. CrossRef
    17. Gandhi AC, Hung HJ, Shih PH, Cheng CL, Ma YR, Wu SY: In situ confocal Raman mapping study of a single Ti-assisted ZnO nanowire. / Nanoscale Res Lett 2010, 5:581-86. CrossRef
    18. Wagner C: Beitrag zur Theorie des Analufvorgangs. / Z Phys Chem B 1933, 21:25.
    19. Jeong MC, Oh BY, Lee W, Myoung JM: Optoelectronic properties of three-dimensional ZnO hybrid structure. / Appl Phys Lett 2005, 86:103105. CrossRef
    20. Gandhi AC, Huang CY, Yang CC, Chan TS, Cheng CL, Ma YR, Wu SY: Growth mechanism and magnon excitation in NiO nanowalls. / Nanoscale Res Lett 2011, 6:485. CrossRef
    21. Kashchiev D: Dependence of the growth rate of nanowires on the nanowire diameter. / Cryst Growth Des 2006, 6:1154-156. CrossRef
    22. Kofstad P: / Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides. John Wiley, New York; 1972.
    23. Herchl R, Khoi NN, Homma T, Smeltzer WW: Short-circuit diffusion in the growth of nickel oxide scales on nickel crystal faces. / Oxid Met 1972, 4:35-9. CrossRef
    24. Shewmon P: / Diffusion in Solids. 2nd edition. TMS, Warrendale; 1989.
    25. Cheng CL, Ma YR, Chou MH, Huang CY, Yeh V, Wu SY: Direct observation of short-circuit diffusion during the formation of a single cupric oxide Nanowire. / Nanotechnology 2007, 18:245604. CrossRef
    26. Wu SY: Design and controlling of in-plane CuO nanowires: an investigation of growth mechanism and phonon confinement effect. / J Nanosci Lett 2012, 2:5.
    27. Gao F, Chino N, Naik SP, Sasaki Y, Okubo T: Photoelectric properties of nano-ZnO fabricated in mesoporous silica film. / Mater Lett 2007, 61:3179-184. CrossRef
    28. Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, Meyyappan M: Growth of epitaxial nanowires at the junction of nanowalls. / Science 2003, 23:1249. CrossRef
  • 作者单位:Po-Hsun Shih (1)
    Hsuan-Jung Hung (1)
    Yuan-Ron Ma (1)
    Sheng-Yun Wu (1)

    1. Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
  • ISSN:1556-276X
文摘
In this study, we synthesized various dimensionalities of ZnO nanowires using the Ti grid-assisted chemical vapor deposition process. Energy dispersive X-ray spectroscopic mapping technique accompanied with a lattice diffusion model was used to characterize the growth mechanism. A diffusion ratio γ, defined by short-circuit and lattice diffusion activation energies, was obtained to describe the growth mechanism of ZnO nanowires. The tunable dimensionalities of ZnO nanowires allow us to modify the morphology of ZnO nanocrystals by developing well-controlled potential applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700