Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi, Northwest China
详细信息    查看全文
  • 作者:Lei Yang (1)
    YunGang Cao (1)
    XiaoHua Zhu (2)
    ShengHe Zeng (3)
    GuoJiang Yang (3)
    JiangYong He (3)
    XiuChun Yang (4) (5)
  • 关键词:thermal infrared remote sensing ; land surface temperature retrieval ; split ; window algorithm ; Landsat ; 8 TIRS
  • 刊名:Journal of Arid Land
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:6
  • 期:6
  • 页码:704-716
  • 全文大小:2,038 KB
  • 参考文献:1. Becker F, Li Z L. 1995. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sensing Reviews, 12(3鈥?): 225鈥?53. CrossRef
    2. Friedel M J. 2012. Data-driven modeling of surface temperature anomaly and solar activity trends. Environmental Modelling & Software, 37: 217鈥?32. CrossRef
    3. Gao L, Qin Z H. 2007. Research on the fitting relation of the planck equation expansion parameter model in split window algorithm. Geography and Geo-Information Science, 23(4): 9鈥?2.
    4. Hall M R, Dehdezi P K, Dawson A R, et al. 2012. Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Engineering, 24(1): 32鈥?7. CrossRef
    5. Irons J R, Dwyer J L, Barsi J A. 2012. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122: 11鈥?1. CrossRef
    6. Jiang L P, Qin Z H, Xie W. 2006. Retrieving atmospheric water vapor from modis near infrared data. Remote Sensing For Land & Resources, (3): 5鈥?, 88.
    7. Jim茅nez-Mu帽oz J C, Sobrino J A. 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22): 4688鈥?695. CrossRef
    8. Jim茅nez-Mu帽oz J C, Sobrino J A. 2010. A single-channel algorithm for land-surface temperature retrieval from ASTER data. Geoscience and Remote Sensing Letters, IEEE, 7(1): 176鈥?79. CrossRef
    9. Katsiabani K, Adaktilou N, Cartalis C. 2009. A generalised methodology for estimating land surface temperature for non-urban areas of Greece through the combined use of NOAA-AVHRR data and ancillary information. Advances in Space Research, 43(6): 930鈥?40. CrossRef
    10. Kaufman Y J, Gao B C. 1992. Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 871鈥?84. CrossRef
    11. Li H, Liu Q H, Zhong B, et al. 2010. A single-channel algorithm for land surface temperature retrieval from HJ-1B/IRS data based on a parametric model. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2448鈥?451. CrossRef
    12. Li Z L, Tang B H, Wu H, et al. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131(2013): 14鈥?7. CrossRef
    13. Ma Y, Kuang Y Q, Huang N S. 2010. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2): 110鈥?18. CrossRef
    14. Maimaitiyiming M, Ghulam A, Tiyip T, et al. 2014. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 59鈥?6. CrossRef
    15. McMillin L M. 1975. Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36): 5113鈥?117. CrossRef
    16. Peng S S, Piao S L, Zeng Z Z, et al. 2014. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111(8): 2915鈥?919. CrossRef
    17. Price J C. 1984. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89(D5): 231鈥?37. CrossRef
    18. Qin Z H, Olmo G D, Karnieli A. 2001a. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. Journal of Geophysical Research, 106(D19): 22655鈥?2670. CrossRef
    19. Qin Z H, Karnieli A, Berliner P. 2001b. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18): 3719鈥?746. CrossRef
    20. Qin Z H, Zhang M H, Arnon K. 2001c. Split window algorithms for retrieving land surface temperature from NOAA-AVHRR data. Remote Sensing For Land & Resources, 56(2): 33鈥?2.
    21. Sobrino J, Raissouni N, Li Z L. 2001. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75(2): 256鈥?66. CrossRef
    22. Son N T, Chen C F, Chen C R, et al. 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417鈥?27. CrossRef
    23. Srivastava P K, Majumdar T J, Bhattacharya A K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10): 1563鈥?574. CrossRef
    24. Stathopoulou M, Cartalis C, Petrakis M. 2007. Integrating Corine Land Cover data and Landsat TM for surface emissivity definition: application to the urban area of Athens, Greece. International Journal of Remote Sensing, 28(15): 3291鈥?304. CrossRef
    25. Van de Griend A A, Owe M. 1993. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing, 14(6): 1119鈥?131. CrossRef
    26. Vinnikov K Y, Yu Y Y, Goldberg M D, et al. 2011. Scales of temporal and spatial variability of midlatitude land surface temperature. Journal of Geophysical Research: Atmospheres (1984鈥?012), 116(D2): 2156鈥?202. CrossRef
    27. Wan Z, Zhang Y, Zhang Q, et al. 2004. Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1): 261鈥?74. CrossRef
    28. Wan Z M. 2008. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112(1): 59鈥?4. CrossRef
    29. Yao J Q. 2012. Temporal-spatial distribution of the water vapor content and evolution character of water vapor during heavy rain in Tianshan Mountains. MSc Thesis. Urumqi: Xinjiang Normal University.
    30. Zheng G Q, Lu M, Zhang T, et al. 2010. The impact of difference of land surface emissivity on the land surface temperature retrieval in Jinan City. Journal of Shandong Jianzhu University, 25(5): 519鈥?23.
    31. Zhou J, Zhan W F, Hu D Y, et al. 2010. Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data. Chinese Geographical Science, 20(2): 123鈥?31. CrossRef
  • 作者单位:Lei Yang (1)
    YunGang Cao (1)
    XiaoHua Zhu (2)
    ShengHe Zeng (3)
    GuoJiang Yang (3)
    JiangYong He (3)
    XiuChun Yang (4) (5)

    1. Department of Remote Sensing and Geographic Information Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
    2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
    3. Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
    4. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
    5. College of Environment and Planning, Shangqiu Normal University, Shangqiu, 476000, China
文摘
Scientific interest in geophysical information about land surface temperature (LST) is ever increasing, as such information provides a base for a large number of applications, including environmental and agricultural monitoring. Therefore, the research of LST retrieval has become a hot topic. Recent availability of Landsat-8 satellite imagery provides a new data source for LST retrieval. Hence, exploring an adaptive method with reliable accuracy seems to be essential. In this study, basing on features of Landsat-8 TIRS thermal infrared channels, we re-calculated parameters in the atmospheric transmittance empirical models of the existing split-window algorithm, and estimated the ground emissivity with the help of the land cover classification map of the study area. Furthermore, a split-window algorithm was rebuilt by virtual of the estimation model of the updated atmospheric transmittance and the ground emissivity, and then a remote sensing retrieval for the LST of Shihezi city in Xinjiang Uygur autonomous region of Northwest China was conducted on the basis of this modified algorithm. Finally, precision validation of the new model was implemented by using the MODIS LST products. The results showed that the LST retrieval from Landsat-8 TIRS data based on our algorithm has a higher credibility, and the retrieved LST is more consistent with the MODIS LST products. This indicated that the modified algorithm is suitable for retrieving LST with competitive accuracy. With higher resolutions, Landsat-8 TIRS data may provide more accurate observation for LST retrieval.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700