The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus
详细信息    查看全文
  • 作者:Qing Kong (1)
    Chen Chi (1)
    Jiujiang Yu (2)
    Shihua Shan (3)
    Qiyu Li (1)
    Qianting Li (1)
    Bin Guan (1)
    William C. Nierman (4)
    Joan W. Bennett (5)
  • 关键词:Aspergillus flavus ; Bacillus megaterium ; Aflatoxin ; Gene chip ; qRT ; PCR
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:98
  • 期:11
  • 页码:5161-5172
  • 全文大小:
  • 参考文献:1. Amaike S, Keller NP (2011) / Aspergillus flavus. Annu Rev Phytopathol 49:107-33 CrossRef
    2. AOAC (2000) Association of Official Analytical Chemist: official methods of analysis, natural toxins, 17th edn. AOAC, Washington
    3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25-9 CrossRef
    4. Bennett JW (1981) Loss of norsolorinic acid and aflatoxin production by a mutant of / Aspergillus parasiticus. J Gen Microbiol 124(2):429-32
    5. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497-16 CrossRef
    6. Bottone EJ, Peluso RW (2003) Production by / Bacillus pumilus (MSH) of an antifungal compound that is active against / Mucoraceae and / Aspergillus species: preliminary report. J Med Microbiol 52(1):69-4 CrossRef
    7. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in / Aspergillus nidulans. Proc Natl Acad Sci U S A 93(4):1418-422 CrossRef
    8. Brown RL, Cotty PJ, Cleveland TE (1991) Reduction in aflatoxin content of maize by atoxigenic strains of / Aspergillus flavus. J Food Prot 54(8):623-26
    9. Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of / Aspergillus flavus and / Fusarium moniliforme by / Trichoderma species. 1. Macroscopical and microscopical observations of fungal interactions. Mycopathologia 139(2):115-21 CrossRef
    10. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447-59 CrossRef
    11. Chang PK (2003) The / Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol Gen Genomics 268:711-19
    12. Chang PK, Ehrlich KC, Fujii I (2009a) Cyclopiazonic acid biosynthesis of / Aspergillus flavus and / Aspergillus oryzae. Toxins 1:74-9 CrossRef
    13. Chang PK, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic / Aspergillus flavus isolates. Fungal Genet Biol 42(11):914-23 CrossRef
    14. Chang PK, Horn BW, Dorner JW (2009b) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in / Aspergillus flavus. Fungal Genet Biol 46(2):176-82 CrossRef
    15. Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF (2012) Effects of / laeA deletion on / Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 116(2):298-07 CrossRef
    16. Ciegler A, Lillehoj EB, Peterson RE, Hall HH (1966) Microbial detoxification of aflatoxin. Appl Microbiol 14(6):934-39
    17. Cotty PJ (1994) Influence of field application of an atoxigenic strain of / Aspergillus flavus on the populations of / A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology 84:1270-277 CrossRef
    18. Georgianna DR, Fedorova ND, Burroughs JL, Dolezal AL, Bok JW, Horowitz-Brown S, Woloshuk CP, Yu J, Keller NP, Payne GA (2010) Beyond aflatoxin: four distinct expression patterns and functional roles associated with / Aspergillus flavus secondary metabolism gene clusters. Mol Plant Pathol 11(2):213-26 CrossRef
    19. Gil-Serna J, Pati?o B, Cortés L, González-Jaén MT, Vázquez C (2011) Mechanisms involved in reduction of ochratoxin A produced by / Aspergillus westerdijkiae using / Debaryomyces hansenii CYC 1244. Int J Food Microbiol 151(1):113-18 CrossRef
    20. Hormisch D, Brost I, Kohring GW, Giffhorn F, Kroppenstedt RM, Stackebrandt E, F?rber P, Holzapfel WH (2004) / Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst Appl Microbiol 27(6):653-60 CrossRef
    21. Horn BW, Dorner JW (1999) Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of / Aspergillus flavus along a transect within the United States. Appl Environ Microbiol 65(4):1444-449
    22. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe K, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736-41 CrossRef
    23. Kiyota T, Hamada R, Sakamoto K, Iwashita K, Yamada O, Mikami S (2011) Aflatoxin non-productivity of / Aspergillus oryzae caused by loss of function in the / aflJ gene product. J Biosci Bioeng 111:512-17 CrossRef
    24. Kong Q, Shan SH, Liu QZ, Wang XD, Yu FT (2010) Biocontrol of / Aspergillus flavus on peanut kernels by use of a strain of marine / Bacillus megaterium. Int J Food Microbiol 139(1-):31-5 CrossRef
    25. Matsushima K, Chang PK, Yu J, Abe K, Bhatnagar D, Cleveland TE (2001) Pre-termination in / aflR of / Aspergillus sojae inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol 55(5):585-89 CrossRef
    26. Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA (1998) Characterization of / aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64(10):3713-717
    27. Nesci A, Bluma R, Etcheverry M (2005) In vitro selection of maize rhizobacteria to study potential biological control of / Aspergillus section Flavi and aflatoxin production. Eur J Plant Pathol 113(2):159-71 CrossRef
    28. O'Brian GR, Georgianna DR, Wilkinson JR, Yu J, Abbas HK, Bhatnagar D, Cleveland TE, Nierman WC, Payne GA (2007) The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 99(2):232-39 CrossRef
    29. Olofsson TC, Ahrne S, Molin G (2007) Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int J Food Microbiol 118(3):233-40 CrossRef
    30. Palumbo JD, Baker JL, Mahoney NE (2006) Isolation of bacterial antagonists of / Aspergillus flavus from almonds. Microb Ecol 52(1):45-2 CrossRef
    31. Papavizas G (1985) / Trichoderma and / Glicladium: biology, ecology and potential for biocontrol. Ann Rev Phytopathol 23:23-4 CrossRef
    32. Payne GA, Brown MP (1998) Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol 36:329-62 CrossRef
    33. Reddy K, Reddy C, Muralidharan K (2009) Potential of botanicals and biocontrol agents on growth and aflatoxin production by / Aspergillus flavus infecting rice grains. Food Control 20:173-78 CrossRef
    34. Schmidt-Heydt M, Abdel-Hadi A, Magan N, Geisen R (2009) Complex regulation of the aflatoxin biosynthesis gene cluster of / Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 135(3):231-37 CrossRef
    35. Sindhu S, Chempakam B, Leela NK, Suseela Bhai R (2011) Chemoprevention by essential oil of turmeric leaves ( / Curcuma longa L.) on the growth of / Aspergillus flavus and aflatoxin production. Food Chem Toxicol 49(5):1188-192 CrossRef
    36. Smith CA, Robertson D, Yates B, Nielsen DM, Brown D, Dean RA, Payne GA (2008) The effect of temperature on Natural Antisense Transcript (NAT) expression in / Aspergillus flavus. Curr Genet 54(5):241-69 CrossRef
    37. Takahashi T, Chang PK, Matsushima K, Yu J, Abe K, Bhatnagar D, Cleveland TE, Koyama Y (2002) Nonfunctionality of / Aspergillus sojae aflR in a strain of / Aspergillus parasiticus with a disrupted / aflR gene. Appl Environ Microbiol 68(8):3737-743 CrossRef
    38. Takahashi T, Maeda H, Yoneda S, Ohtaki S, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K (2005) The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol 57(6):1780-796 CrossRef
    39. Taylor MC, Jackson CJ, Tattersall DB, French N, Newman J, Briggs LJ, Lapalikar GV, Campbell PM, Scott C, Russell RJ, Oakeshott JG (2010) Identification and characterization of two families of F420 H2-dependent reductases from / Mycobacteria that catalyse aflatoxin degradation. Mol Microbiol 78:561-75 CrossRef
    40. Van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food: perspectives in a global and European context. Anal Bioanal Chem 389(1):147-57 CrossRef
    41. Yamazaki H, Yamazaki D, Takaya N, Takagi M, Ohta A, Horiuchi H (2007) A chitinase gene, / chiB, involved in the autolytic process of / Aspergillus nidulans. Curr Genet 51:89-8 CrossRef
    42. Yu J, Bhatnagar D, Cleveland TE (2004a) Completed sequence of aflatoxin pathway gene cluster in / Aspergillus parasiticus. FEBS Lett 564(1-):126-30 CrossRef
    43. Yu J, Chang PK, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters in / Aspergillus parasiticus and / Aspergillus flavus. Appl Environ Microbiol 61(6):2365-371
    44. Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004b) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70(3):1253-262 CrossRef
    45. Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC (2011) Tight control of mycotoxin biosynthesis gene expression in / Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 322(2):145-49 CrossRef
    46. Yu JH, Butchko RA, Fernandes M, Keller NP, Leonard TJ, Adams TH (1996) Conservation of structure and function of the aflatoxin regulatory gene / aflR from / Aspergillus nidulans and / A. flavus. Curr Genet 29(6):549-55 CrossRef
    47. Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from / Bacillus subtilis B-FS06 inhibiting the growth of / Aspergillus flavus. World J Microbiol Biotechnol 24(6):783-88 CrossRef
  • 作者单位:Qing Kong (1)
    Chen Chi (1)
    Jiujiang Yu (2)
    Shihua Shan (3)
    Qiyu Li (1)
    Qianting Li (1)
    Bin Guan (1)
    William C. Nierman (4)
    Joan W. Bennett (5)

    1. School of Food Science and Engineering, Ocean University of China, Yushan Road 5, Qingdao, Shandong, 266003, China
    2. Beltsville Agricultural Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, USA
    3. Shandong Peanut Research Institute, Qingdao, Shandong, China
    4. The J. Craig Venter Institute, Rockville, MD, USA
    5. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
  • ISSN:1432-0614
文摘
Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98?%) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700